Tracking river responses to enhanced rock weathering
- 1Department of Oceanography, Texas A&M University, College Station, TX
- 2School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA
- 3School of Environment, Beijing Normal University, Beijing, China
- 4Department of Earth and Planetary Sciences, Yale University, New Haven, CT
- 5Yale Natural Carbon Capture Center, Yale University, New Haven, CT
Enhanced Rock Weathering (ERW) is gaining prominence as a viable option among Carbon Dioxide Removal strategies, offering a sustainable way to reduce atmospheric CO₂ levels, along with additional benefits such as improved soil pH and nutrient release. However, a detailed understanding of how ERW affects river systems—a critical factor in assessing its net efficiency in consuming CO₂—is still lacking, impeding its broader acceptance as a consistent carbon management method. This study aims to bridge this gap using a comprehensive integrated approach that combines machine learning and numerical models, specifically targeting river systems in North America. A key element of our methodology is the implementation of an innovative dynamic river network model, designed to provide a thorough analysis of river responses to ERW application. Our research indicates relatively low carbon leakage in most river segments over a two-year period. Nevertheless, we also highlight significant spatial and seasonal variations in these responses, paving the way for a strategic plan to optimize ERW deployment by selecting the most suitable watersheds and optimal times for application.
How to cite: Zhang, S., Reinhard, C., Liu, S., Kanzaki, Y., and Planavsky, N.: Tracking river responses to enhanced rock weathering, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21731, https://doi.org/10.5194/egusphere-egu24-21731, 2024.