EGU24-2870, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-2870
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Water-induced mantle overturns and the origins of Archean cratons

Zhongqing Wu1
Zhongqing Wu1
  •  Jian Song1, Guochun Zhao2,3, Zhongxu Pan1

1 Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China.

2Department of Earth Sciences, The University of Hong Kong, Hong Kong, Hong Kong.

3Department of Geology, State Key Laboratory of Continental Dynamics, Northwest University, Xi'an, China.

* Corresponding author: wuzq10@ustc.edu.cn.

The origins of the Archean cratons were most important events in the early Earth and crucial for understanding how the early Earth worked. The mechanisms for the origins of the Archean cratons remain unclear. It is widely accepted that Archean tonalite-trondhjemite-granodiorite (TTG) plutons were derived from hydrous mafic magmas in the garnet/ amphibole stability field. Although the subduction can bring water to the mantle to produce granitic magma, the island Arc Model for the origin of continents meets fundamental challenges. The growing evidences support the plume-driven oceanic plateau models for the origin of continents. However, the lower parts of the oceanic plateau have been thought to be dry. How to generate the hydrous meta-basalt at the base of the oceanic plateau remain an open question.

Here we show that the Archean cratons resulted from the evolution of the hydrous magma ocean (Wu et al., 2023). The whole-mantle magma ocean created by the moon-forming giant impact likely evolved into an outer magma ocean and a basal magma ocean because the magma ocean would initially crystallize in the mid mantle and the basal magma ocean is denser than the overlying solid mantle. The basal MO at the beginning should contain a certain amount of water since extensive studies suggest substantial accretion of water-rich bodies during core formation. The major lower-mantle minerals have limited water storage capacity. Therefore, with progressive crystallization, the basal magma ocean becomes increasingly enriched in water. The basal magma ocean eventually becomes gravitationally unstable because of the enrichment of water. The triggered massive mantle overturns transported a large amount of water upward to the shallow part of the Earth and resulted in the major pulses of the crust and thick SCLM generations. The model can account for many observations including the source of water needed for generation of the continental crust, the major pulse of crustal growth around the end of the Archean, why the TTG and thick SCLM basically occurred in the Archean, and why only the Earth among inner planets was covered with the continental crust.

 

Wu, Z., Song, J., Zhao, G., & Pan, Z. (2023). Water-induced mantle overturns leading to the origins of Archean continents and subcontinental lithospheric mantle. Geophysical Research Letters, 50, e2023GL105178. https://doi.org/10.1029/2023GL105178

How to cite: Wu1, Z.: Water-induced mantle overturns and the origins of Archean cratons, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-2870, https://doi.org/10.5194/egusphere-egu24-2870, 2024.