EGU24-3109, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-3109
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Mineralogy and P-T conditions of Superior- type Iron Formation fromBundelkhand Craton, North Central India

Bhanu Pratap Singh Bisht
Bhanu Pratap Singh Bisht
  • IISER Bhopal, EARTH AND ENVIRONMENTAL SCIENCE, Bhopal, India (bhanu23@iiserb.ac.in)

Iron Formations (IF) are economically significant sedimentary rocks primarily formed in the Precambrian evolutionary history of the Earth. In the Precambrian period, Iron Formations were deposited within marine sediments on stable continental margins (superior-type) and in association with volcanic rocks and many volcanic Massive Sulphide (VMS) deposits (Algoma-type). Most scientists agree that for BIF to form, photosynthesis and changing ferrous iron from seawater into mixed-valence iron (oxy-hydroxide) oxides and carbonate phases during oxidation are needed.
The present study is based on the Superior-type BIFs from the Girar Supracrustal Belt of Southern Bundelkhand terrane, which mainly consists of Neoarchean K-rich granitoids with a minor volume of a schist complex, TTG, sanukitoids, and mafic-ultramafic layered intrusion. The Girar schist (metasedimentary) belt is mostly made up of two types of rocks: (i) quartzite and (ii) BIFs. There are also some dolomitic marble and chlorite schist lenses close to the quartzite/BIF boundary. The BIFs consist of thick-bedded quartz and hematite with magnetite. The quartzites display low-grade metamorphism of fuchsite- and hematite-bearing quartz arenite with thick meta-argillite (schist) laminae and lesser quartz pebble conglomerates.
P-T pseudosection modelling indicates that Fe-carbonates and iron-oxyhydroxides (minnesotaite) are the primary phases that stabilize at 200 – 250 O C, 0.1–0.15 GPa. Subsequently, the low-temperature phases experienced dehydration and decarbonisation reactions with an increase in temperature, leading to the stabilisation of hematite and magnetite. The absence of orthopyroxene in the BIFs suggests these rocks suffer amphibolite facies
metamorphism, which is uncommon in generally undeformed superior-type BIFs.

How to cite: Bisht, B. P. S.: Mineralogy and P-T conditions of Superior- type Iron Formation fromBundelkhand Craton, North Central India, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3109, https://doi.org/10.5194/egusphere-egu24-3109, 2024.