EGU24-3243, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-3243
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Moving beyond the mean to understand circulation extremes under climate change

Tiffany Shaw1, Osamu Miyawaki2, and Hsing-Hung Chou1
Tiffany Shaw et al.
  • 1The University of Chicago, Department of the Geophysical Sciences, United States of America (tas1@uchicago.edu)
  • 2National Center for Atmospheric Research, Boulder, USA

Much has been learned about the response of the mean circulation under climate change. In particular, the subtropical jet will accelerate, the eddy-driven jet will shift poleward, storminess in the Southern Hemisphere will increase whereas storminess in the Northern Hemisphere will be impacted by a tug of war between different factors. However, very little is known about how circulation extremes will respond to climate change beyond blocking. This is in stark contrast to our understanding of the response of extreme temperatures, which follow the mean via an additive increase, and the response of extreme precipitation, which increase faster than the mean because of a multiplicative increase connected to the non-linear Clausius-Clapeyron relation. Here as a starting point, we investigate changes in upper-level circulation extremes defined using a daily distribution. We show fast upper-level jet stream (zonal) winds get faster under climate change. We also show extreme jet stream meandering or waviness (meridional wind) increases under climate change. These responses are geostrophic, robust across a climate model hierarchy (CMIP/AMIP/AQUA), and not connected to sea ice loss. The increase in upper-level circulation extremes is shown via moist thermal wind to be related to a multiplicative response connected to the non-linear Clausius-Clapeyron relation. Thus, upper-level circulation extremes exhibit a multiplicative increase similar to precipitation extremes. The results can be used to explain projected changes in commercial flight times, record-breaking winds, clear-air turbulence and a potential increase in severe weather occurrence under climate change.

How to cite: Shaw, T., Miyawaki, O., and Chou, H.-H.: Moving beyond the mean to understand circulation extremes under climate change, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3243, https://doi.org/10.5194/egusphere-egu24-3243, 2024.