EGU24-3374, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-3374
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hot spot in the schoolyard

Isabelle Veltz1,2 and Virginie Bour1
Isabelle Veltz and Virginie Bour
  • 1Laboratoire des Sciences de la Terre et de la Vie, LTG Roosevelt, Reims, France (isabelle.veltz-balatre@ac-reims.fr)
  • 2Plateforme Eduterre, Ifé, Institut Français de l'Education, ENS, Lyon, France (isabelle.veltz@free.fr)

Defined by Howard in 1818, an “Urban Heat Island” corresponds to an urbanized area where the temperature is higher than in natural or surrounding environments. With climate change, this phenomenon affects more than 80% of urban populations and is linked to the storage of heat in the asphalt during the day and the stagnation of air between homes. Water runs off the surface of the waterproofed soil and the vegetation must be watered constantly.

With the regular increase in temperatures, the Roosevelt high school in the city center of Reims (Champagne, France) becomes a furnace from spring to autumn. In fact, with its tarmac square schoolyard surrounded by high dark red brick buildings, we measure recurring morning temperatures above 30°C and afternoon peaks above 40°C in classrooms.

This work, carried out by students, aims to define adaptation strategies and propose feasible modifications in this enclosure, which is classified as a “historic monument” and which must therefore maintain its total integrity. Roosevelt high school contains the “War Room” which is the surrender room where the end of the Second World War was signed on May 7, 1945 and it’s impossible to change its appearance.

After identifying the causes favouring the “Heat Island” effect in their highschool, the student carried out measurements of albedo, runoff and impact of the scare vegetated areas were carried out. Analog and computer-assisted experiments have been developed to propose solutions to limit heat accumulation and soil drying and promotes humidification and CO2 trapping in the ground.

This work conducted by the students allowed them to propose non-invasive solutions improving the quality of life in their work environment.

Through its local and experimental approach, this work has made concrete highly mediatized notions whose causes and consequences are not always well associated. Moreover, the major role of soil and soil preservation, in modulating climate change, has been clearly highlighted.

How to cite: Veltz, I. and Bour, V.: Hot spot in the schoolyard, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3374, https://doi.org/10.5194/egusphere-egu24-3374, 2024.