EGU24-3719, updated on 08 Mar 2024
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

An observation-based estimate of the Atlantic meridional freshwater transport from 2004 to 2012

Huayi Zheng, Lijing Cheng, Yuying Pan, and Chenyu Zhu
Huayi Zheng et al.
  • Institute of Atmospheric Physics, Chinese Academy of Sciences, China (

Meridional freshwater transport in the Atlantic Ocean (AMFT) plays a vital role in the Atlantic meridional overturning circulation and global climate change, but an accurate estimate of AMFT time series remains challenging.

This study uses an indirect approach that combines the observation of ocean salinity, surface evaporation and precipitation observations to derive AMFT and its uncertainty from 2004 to 2012, by solving the ocean freshwater budget equation. The method provides an independent estimation of AMFT, complementary to array observation and model/reanalysis data. The climatology, interannual and trend of AMFT based on indirect method are analyzed.

Climatologically, there is a strong southward AMFT between 18.5°S and 33.5°S, and a shift to northward from 18.5°S to 66.5°N. The highest transport occurs at 3.5°S (-0.29±0.09 Sv) and 39.5°N (-0.52±0.08 Sv). The estimation based on direct observation and reanalysis data are compared to give a clear understanding of AMFT climatology.

The interannual variability of AMFT exhibits meridional coherence from 33.5°S to 66.5°N, except for the lag propagation near 44ºN, the boundary of the subpolar and subtropical North Atlantic. The peaks and valleys of AMFT align with El Niño-Southern Oscillation (ENSO) variation. In the south of 44.5ºN, a southward anomalous AMFT appears during the La Nina events, such as January 2006 (-0.13 Sv), January 2008 (-0.16 Sv), and November 2010 (0 Sv) for 20ºS-44.5ºN mean. Conversely, northward AMFT increases when ONI peaks, 0.07Sv and 0.17Sv for 20ºS-44.5ºN mean in November 2008 and January 2010, respectively. The corresponding relationship between ENSO and AMFT suggest a potentially remote impact of ENSO on the Atlantic Ocean.

The derived time series indicates that, throughout the Atlantic Ocean, there is an increasing trend of northward AMFT from 2004 to 2012 when AMOC weaken, resulting in a freshwater divergence in the South Atlantic and subtropical North Atlantic, as well as a freshwater convergence in the subpolar North Atlantic.

Additionally, we discuss the definition of freshwater transport, considering its dependence on reference salinity. Analyzing the impact of reference salinity on MFT estimation based on a theoretical model, we find that the choice of reference salinity has little impact when there is no net volume transport. Therefore, reference salinity does not significantly affect the AMFT discussed in this study.

How to cite: Zheng, H., Cheng, L., Pan, Y., and Zhu, C.: An observation-based estimate of the Atlantic meridional freshwater transport from 2004 to 2012, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3719,, 2024.