EGU24-389, updated on 08 Mar 2024
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Analysing the projected monthly changes of temperature-related climate indices over Europe using zonal and meridional segments based on CMIP6 data

Ferenc Divinszki, Anna Kis, and Rita Pongrácz
Ferenc Divinszki et al.
  • Eötvös Loránd University, Institute of Geography and Earth Sciences, Department of Meteorology, Hungary (

The latest assessment report (AR6) of the Intergovernmental Panel on Climate Change includes a new element to climate research, i.e. the Interactive Atlas (IA), which is very useful for users from different sectors. As the new CMIP6 global climate model simulations use the brand-new SSP-scenarios paired with the RCP-scenarios, the latest climate change projections should be evaluated in order to update the regional and national adaptation strategies. Keeping this in mind we focused on Europe, with a special emphasis on Hungary in our study.

Our aim was to analyse the potential future changes of different temperature indices for Europe, in order to recognize spatial patterns and trends that may shape our climate in the second half of the 21st century. For this purpose, multi-model mean simulation data provided by the IPCC AR6 WG1 IA were downloaded on a monthly base. We chose two climate indices beside the mean temperature values, which represent temperature extremes, namely, the number of days with maximum temperature above 35 °C and the number of frost days (i.e. when daily minimum temperature is below 0 °C). We focused on the end of the 21st century (2081–2100) with also briefly considering the medium-term changes of the 2041–2060 period (both compared to the last two decades of the historical simulation period, i.e. 1995–2014 as the reference period). For both future periods we used all scenarios provided in the IA, namely, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5.

Several zonal and meridional segments over the continent were defined, where we analysed the projected changes of the indices. The zonal segments provide an insight on two different effects that may induce spatial differences between future regional changes. (i) Continentality can be recognized as an increasing effect from the western parts of the segment towards the east. (ii) Topography also appears as the influence of mountains, plains, and basins emerge. The meridional segments provide information about the north-to-south differences as well, as the effects of sea cover. The changes in the indices are plotted on diagrams representing the different months, where the differences in the scenarios are also shown. These diagrams are compared to their respective landscape profiles, furthermore, statistical parameters were calculated. In addition, a monotony index was defined as the cumulative direction of differences between the neighbouring grid cells and analysed within the study.

Our results show that in the changes of mean temperature, both the zonal location and sea cover will play a key role in forming spatial differences within Europe. However, for the extreme temperature indices, topography and continentality are likely to become more dominant than sea cover, while the zonal location remains an important factor. 

Acknowledgements: This work was supported by the Hungarian National Research, Development and Innovation Fund [grant numbers PD138023, K-129162], and the National Multidisciplinary Laboratory for Climate Change [grant number RRF-2.3.1-21-2022-00014]. 

How to cite: Divinszki, F., Kis, A., and Pongrácz, R.: Analysing the projected monthly changes of temperature-related climate indices over Europe using zonal and meridional segments based on CMIP6 data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-389,, 2024.