EGU24-3930, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-3930
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Emergent constraint on future anthropogenic carbon and excess heat uptake in the Southern Ocean

Timothée Bourgeois, Nadine Goris, Jörg Schwinger, and Jerry F. Tjiputra
Timothée Bourgeois et al.
  • NORCE Norwegian Research Centre and Bjerknes Centre for Climate Research, Bergen, Norway (tbou@norceresearch.no)

The Southern Ocean is a major sink of anthropogenic carbon and excess heat. In this region, the Earth system model projections of these sinks provided by the CMIP5 and CMIP6 scenario experiments show a large model spread. This contributes significantly to the large uncertainties in the overall climate sensitivity and remaining carbon budgets for ambitious climate targets. Hence, a reduction in the uncertainty of the future Southern Ocean carbon and heat sinks is urgently needed.

Globally, Bronselaer and Zanna (2020) identified an emergent coupling between anthropogenic carbon and excess heat uptake, highlighting that the passive-tracer behavior of these two quantities is dominant under high-emissions scenarios. This coupling indicates that the use of a single observational constraint might be sufficient to reduce projection uncertainties in both anthropogenic carbon and excess heat uptake. Here, we use this approach for the northern limb of the Southern Ocean (30°S-55°S) where the subduction of intermediate and mode water is known to drive carbon and heat uptake. We found that, in this region, the variations in the models’ contemporary water-column stability over the first 2000 m is highly correlated to both their future anthropogenic carbon uptake and excess heat uptake efficiency. Using observational data of water-column stability, we reduce the uncertainty of future estimates of (1) the cumulative anthropogenic carbon uptake by up to 53% and (2) the excess heat uptake efficiency by 28%. Independent studies have found similar constraints in the Southern Ocean and globally, strengthening our findings (Liu et al., 2023; Newsom et al., 2023; Terhaar et al., 2021, 2022), and pinpointing that a better representation of water-column stratification in Earth system models is essential to improve future anthropogenic climate change projections.

Bourgeois, T., Goris, N., Schwinger, J., and Tjiputra, J. F.: Stratification constrains future heat and carbon uptake in the Southern Ocean between 30°S and 55°S, Nat Commun, 13, 340, https://doi.org/10.1038/s41467-022-27979-5, 2022.

Bronselaer, B. and Zanna, L.: Heat and carbon coupling reveals ocean warming due to circulation changes, Nature, 584, 227–233, https://doi.org/10.1038/s41586-020-2573-5, 2020.

Liu, M., Soden, B. J., Vecchi, G. A., and Wang, C.: The Spread of Ocean Heat Uptake Efficiency Traced to Ocean Salinity, Geophys. Res. Lett., 50, e2022GL100171, https://doi.org/10.1029/2022GL100171, 2023.

Newsom, E., Zanna, L., and Gregory, J.: Background Pycnocline Depth Constrains Future Ocean Heat Uptake Efficiency, Geophys. Res. Lett., 50, e2023GL105673, https://doi.org/10.1029/2023GL105673, 2023.

Terhaar, J., Frölicher, T. L., and Joos, F.: Southern Ocean anthropogenic carbon sink constrained by sea surface salinity, Sci. Adv., 7, eabd5964, https://doi.org/10.1126/sciadv.abd5964, 2021.

Terhaar, J., Frölicher, T. L., and Joos, F.: Observation-constrained estimates of the global ocean carbon sink from Earth system models, Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, 2022.

How to cite: Bourgeois, T., Goris, N., Schwinger, J., and Tjiputra, J. F.: Emergent constraint on future anthropogenic carbon and excess heat uptake in the Southern Ocean, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3930, https://doi.org/10.5194/egusphere-egu24-3930, 2024.