Ground-based thermal mapping of Venus: HDO and SO2 monitoring and upper limits of NH3, PH3 and HCN at the cloud top
- 1Paris Observatory, LESIA, Meudon, France (therese.encrenaz@obspm.fr)
- 2SWRI, San Antonio, TX, USA
- 3LATMOS, IPSL, France
- 4LMD, IPSL, France
- 5DTU, Denmark
- 6Kyoto University, Japan
As part of a long-term monitoring program, full disk thermal maps of HDO (near 7 microns) and SO2 (near 7 and 19 microns) have been obtained at the cloud top of Venus in 2023, using the TEXES(Texas Echelon Cross-Echelle Spectrograph) imaging spectrometer at the Infrared Telescope Facility (IRTF) at Mauna Kea Observatory. Assuming a constant D/H isotopic ratio, the water abundance has been more or less constant since 2018, at about half its value in 2012-2016. In contrast, the SO2 abundance, which was very high in 2018-2019 and very low between July 2021 and March 2023, has increased by a factor of about 5 between February and July 2023 (close to its maximum level of 2018-2019), and has remained at its high level in September 2023. The origin of these long-term variations is still unclear. In addition, stringent upper limits of NH3 (at 927-931 cm-1), PH3 (at 1161-1164 cm-1) and HCN at 744-748 cm-1) at the cloud top have been obtained in July 2023. These results will be presented and discussed.
How to cite: Encrenaz, T., Greathouse, T., Giles, R., Widemann, T., Bezard, B., Lefevre, F., Lefevre, M., Shao, W., Sagawa, H., Marcq, E., and Arredondo, A.: Ground-based thermal mapping of Venus: HDO and SO2 monitoring and upper limits of NH3, PH3 and HCN at the cloud top, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4022, https://doi.org/10.5194/egusphere-egu24-4022, 2024.
Comments on the supplementary material
AC: Author Comment | CC: Community Comment | Report abuse