EGU24-4119, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-4119
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Ocean boundary pressures: Its significance and sensitivities

Andrew Styles1, Emma Boland1, and Chris Hughes2
Andrew Styles et al.
  • 1British Antarctic Survey, UK
  • 2University of Liverpool, UK

The measurement and theoretical interpretation of circulations is often complicated by the abundance of eddies in the global ocean. However, when considering ocean pressure on the continental boundaries, the system of large-scale circulations can simplify drastically. As part of the OceanBound project, we demonstrate how this deliberately narrow view on the ocean can describe the fundamental aspects of ocean dynamics. Once the interpretative power of boundary pressures is established, we will present early results from an adjoint model (ECCO) to determine the remote and local physical processes which influence the boundary pressure signals. Adjoint models effectively run “backwards” as they relate ocean behaviours to physical causes in the past via automatic differentiation. If the final adjoint study can identify a manageable number of “control points” where specific forcing determines boundary pressures (therefore constraining global circulation) then this will help simplify conceptual models of the global ocean. Such a result would highlight the essential ocean processes for climate projections and produce a core vocabulary for interpreting ocean dynamics.

How to cite: Styles, A., Boland, E., and Hughes, C.: Ocean boundary pressures: Its significance and sensitivities, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4119, https://doi.org/10.5194/egusphere-egu24-4119, 2024.

Supplementary materials

Supplementary material file

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 22 Apr 2024, no comments