EGU24-4352, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-4352
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

The cyclostratigraphy of the Late Triassic Qiangtang Basin in Tibet and the orbital forcing for the Carnian Pluvial Episode

Qian Zhang, Xiugen Fu, and Jian Wang
Qian Zhang et al.
  • Southwest Petroleum University, School of Geoscience and Technology, Chengdu, China (qian_geo@163.com)

The Qiangtang Basin, situated on the Tibetan Plateau, is a basin that contains hydrocarbons and has significant potential for hydrocarbon exploration. However, reconstructing sea-level changes and understanding the sedimentary evolution of the Qiangtang Basin has been hindered by the lack of robust high-resolution geochronology. Meanwhile, the Late Triassic stratigraphy of the Qiangtang Basin has also reported the Carnian pluvial episode, the driving mechanism of which is controversial. In this study, the cyclostratigraphy of the Late Triassic Boli La and Bagong Formations in the Qiangtang Basin was analyzed using high-resolution gamma-ray data. Time series analysis shows that there are 405 kyr eccentricity cycles in the gamma-ray data series. The gamma-ray series was tuned to 405 kyr. Then, we establish a floating astronomical timescale with a length of 17.04 Myr. This astronomical time scale establishes an anchored astronomical time scale using the age of the volcanic rocks found in the top of the Bagong Formation in the drill core as an anchor point. Using the anchored astronomical chronology, we reconstructed the Late Triassic sea level change in the Qiangtang Basin using a recently developed sediment noise model. The reconstructed sea level change is generally consistent with the global sea level curve. The antiphase relationship between the filtered long-term obliquity cycles and the sea-level curves reconstructed from the sedimentary noise model suggests that the long-term obliquity cycles may have been the main driver of the Late Triassic greenhouse sea-level change. Meanwhile, the modulation maxima of the long-term obliquity-modulated cycles correlate well with high sea level, episodic negative carbon isotope excursions, global warming, and marine biotic crises, suggesting that obliquity forcing may have played a prominent role during the Carnian Pluvial Episode. Our results suggest that orbital forcing enhanced the hydrological cycle during the Carnian Pluvial Episode. Our study provides a precise, high-resolution time scale for studying the sedimentary evolution of the Qiangtang Basin, as well as a broader perspective on the relationship between the Carnian Pluvial Episode and astronomical forcing.

How to cite: Zhang, Q., Fu, X., and Wang, J.: The cyclostratigraphy of the Late Triassic Qiangtang Basin in Tibet and the orbital forcing for the Carnian Pluvial Episode, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4352, https://doi.org/10.5194/egusphere-egu24-4352, 2024.