EGU24-467, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-467
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Nature-based solutions for leveed river corridors

Matt Chambers1, Dave Crane2, Charles van Rees1, Matt Shudtz1, Craig Landry1, Susana Ferreira1, Don Nelson1, Burton Suedel3, Brock Woodson1, and Brian Bledsoe1
Matt Chambers et al.
  • 1University of Georgia, Institute for Resilient Infrastructure Systems
  • 2US Army Corps of Engineers
  • 3US Army Engineer Research and Development Center

Climate driven changes in hydrologic regimes are increasing riverine flood risks in many parts of the world. Societies that have historically relied on structural flood management infrastructure, e.g., levees and dams, may face significant challenges as these types of infrastructure can be expensive and politically difficult to retrofit for non-stationary and uncertain future flood hazards. Hybridizing conventional infrastructure systems with nature-based solutions (NbS) can help communities adapt to non-stationarity and improve flood resilience. However, despite advances in the academic literature, NbS have failed to become mainstream in many societies. The United States (US) is no exception and has an extensive history of engineering rivers with structural systems to support immediate-term economic growth and with limited consideration for non-stationarity. For example, there are thousands of kilometers of continuously leveed river corridors in the US and many of these levees were built as close to river banks as possible to maximize the commercial prospects of flood protected land use. Such levees are relatively sensitive to non-stationarity and the communities they protect are becoming increasingly vulnerable to climate change-driven flooding. Our research focuses on how to bridge the gap between the scientific development of NbS and implementation in professional practice. We are doing so by example, with levee setbacks on America’s longest river -- the Missouri -- and in collaboration with the US’s primary action agency of flood risk management -- the US Army Corps of Engineers. Setbacks are implicitly an adaptation strategy that buffer a community against uncertainty and non-stationarity by providing additional room for floodwater conveyance. Unfortunately, they are fraught with social and political challenges because -- as a form of managed retreat -- they require some community members to relinquish private property rights so that the broader community can have greater flood protection. Critical to bridging the gap between levee setback research and implementation is understanding the performance of setbacks at scale and the development of simple and repeatable methods for designing setbacks to successfully deliver multiple ecosystem services. The most fundamental of which is how to “size” a setback – in other words – how big of a floodplain reconnection is required to achieve a desired improvement in flood protection services? In this talk, we will discuss sizing methodologies for achieving multiple services, as well as practical engineering, social, ecological, and administrative constraints that have arisen in the process of translating NbS research to practice. The example of levee setbacks on American rivers is particularly useful because it affords experimentation with repeatability (given the thousands of kilometers of continuously leveed river corridors) and the spatial scale of reconnection required to achieve multiple benefits (given the massive size of many levees and floodplains). The results of which may be relatable to many engineered river corridors around the world and will hopefully support mainstreaming NbS in other social and political contexts.

How to cite: Chambers, M., Crane, D., van Rees, C., Shudtz, M., Landry, C., Ferreira, S., Nelson, D., Suedel, B., Woodson, B., and Bledsoe, B.: Nature-based solutions for leveed river corridors, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-467, https://doi.org/10.5194/egusphere-egu24-467, 2024.