EGU24-5391, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-5391
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Diverse P-T-t paths within the Neoarchean sagduction regime of North China Craton: insights from field data and numerical modeling

Chenying Yu1, Ting Yang2, Jian Zhang*1, Guochun Zhao1, Peter A. Cawood4, Changqing Yin3, Jiahui Qian3, Peng Gao3, and Chen Zhao3
Chenying Yu et al.
  • 1Faculty of Science, Department of Earth Science, The University of HongKong, Hong Kong
  • 2Department of Earth and Space Sciences, Southern University of Science and Technology, PR China
  • 3School of Earth Sciences and Engineering, Sun Yat-Sen University, PR China
  • 4School of Earth, Atmosphere and Environment, Monash University, Australia

The Neoarchean greenstone-granite rock association preserved in the Eastern Block of the North China Craton exhibits distinctive dome-and-keel structures. Although the metamorphic data from these rock assemblages provide valuable insights into the tectonic evolution of this region, the interpretation of the clockwise paths with nearly isothermal decompression (ITD) and the anticlockwise P–T paths involving near-isobaric cooling (IBC) remain inconsistent and controversial. By conducting 2D numerical models with the initial and boundary conditions similar to those of the Neoarchean Eastern Block, we investigated the coexistence of diverse P-T paths and determined their possible geodynamic regime. The model results demonstrate that the combination of crustal density inversion and heat from the high-temperature lower boundary initiates a crustal-scale sagduction process, leading to the formation of dome-and-keel structures. Additionally, we identified four primary types of P-T-t paths. Firstly, an anticlockwise IBC-type P-T-t path reveals the supracrustal rocks gradually subside to a deep crustal level, where they experience a prolonged residence period characterized by ambient mantle cooling without significant exhumation. Secondly, a clockwise ITD-type P-T-t path suggests the supracrustal rocks descend to the deep crust and are partly entrained by upwelling TTG magmas, leading to their rapid ascent to a middle crustal level. Thirdly, a newly identified crescent-type P-T-t path indicates an integrated burial-exhumation cycle, consisting of an initial burial stage with high dT/dP, followed by a rapid exhumation stage and a subsequent cooling stage exhibiting low dT/dP. Lastly, a hairpin-type P-T-t path highlights the slow exhumation rate experienced by deeply buried supracrustal rocks. The dome-and-keel structure and P-T-t paths observed in the numerical model are consistent with the geochronological, metamorphic and structural data of the Eastern Block. Based on these observations, we propose that the crustal-scale sagduction involving a mantle plume could responsible for the geological complexity of eastern China.

This work was financially supported by the National Natural Science Foundation of China (42025204) and National Key Research and Development Program of China (No. 2023YFF0803804).

How to cite: Yu, C., Yang, T., Zhang*, J., Zhao, G., Cawood, P. A., Yin, C., Qian, J., Gao, P., and Zhao, C.: Diverse P-T-t paths within the Neoarchean sagduction regime of North China Craton: insights from field data and numerical modeling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5391, https://doi.org/10.5194/egusphere-egu24-5391, 2024.

Supplementary materials

Supplementary material file

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 15 Apr 2024, no comments