EGU24-570, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-570
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Tracing the origin of Lago Mare biota: ostracods and mollusks from the late Neogene of the Slavonian mountains in the southern Pannonian Basin (NE Croatia) 

Katja Mužek1,3, Oleg Mandic2,3, Valentina Hajek Tadesse1, Mathias Harzhauser2, Marijan Kovačić4, Tomislav Kurečić1, and Đurđica Pezelj4
Katja Mužek et al.
  • 1Croatian Geological Survey, Geology Department, Zagreb, Croatia (kamuzek@hgi-cgs.hr)
  • 2Geological-Paleontological Department, Natural History Museum Vienna, Vienna, Austria
  • 3Department of Paleontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Vienna, Austria
  • 4Department of Geology, Faculty of Science, University of Zagreb, Zagreb, Croatia

Lake Pannon was a huge central European long-lived endorheic lake settled in the Pannonian Basin System and surrounded by the Alps, Carpathians and Dinarides mountain ranges during the late Neogene. The rise of brackish Lake Pannon enabled establishment of specific environmental conditions which triggered a spectacular adaptive radiation of a great number of autochthonous mollusk and ostracod species. The latter species represent excellent regional paleoecological proxies and biostratigraphic markers due to their good preservation-potential and taxonomic richness. Although dominantly endemic to Lake Pannon, some of its taxa managed to migrate into the Eastern Paratethys and have also been reported from the Mediterranean. These species are restricted to the Lago Mare interval, representing the ultimate stage of the Messinian Salinity Crisis, a significant environmental perturbation characterized by massive evaporite deposition. The Lago Mare interval was apparently forced by a drainage of the Eastern Paratethys brackish water into the Mediterranean. The Bozara section is situated in the southern Pannonian Basin at the southern slopes of Mt. Papuk and carries a well-preserved benthic fauna representative of Lake Pannon. The 27 -m-thick section consists of alternating pelitic sediments and sand packages divided into 4 facies: silty marl and calcareous silt (F1), sand (F2), intercalation of sand and sandy silt (F3) and clayey silt (F4). According to the regional stratigraphic division it belongs to the Nova Gradiška Formation. We detected therein 25 ostracod and 17 mollusk taxa allowing an integrated evaluation of the depositional setting, biostratigraphic position and paleogeographic distribution pattern. The paleoecology of Bozara fauna documents a general shallowing upward trend along the section from calm deep-water sublittoral to deltaic high-energy littoral conditions. Based on presence of several biostratigraphic markers, such as the bivalve Rhombocongeria rhomboidea and the ostracod Caspiocypris pontica the stratigraphic position of the Bozara section is constrained to the Portaferrian substage (8.0-4.5 Ma).
From 16 ostracod taxa determined at species level, 10 can be found in the Eastern Paratethys deposits, whereas only 3 are shared with the Mediterranean Lago Mare. In contrast, among 12 corresponding mollusk taxa, only 4 are shared with the Eastern Paratethys, while being completely absent from the Lago Mare interval. Such a paleobiogeographic pattern suggests that the Lake Pannon outflow and faunal migration into the Eastern Paratethys, ceased distinctly before the Lago Mare phase and the corresponding migration of Paratethys biota into the Mediterranean basin.

 

How to cite: Mužek, K., Mandic, O., Hajek Tadesse, V., Harzhauser, M., Kovačić, M., Kurečić, T., and Pezelj, Đ.: Tracing the origin of Lago Mare biota: ostracods and mollusks from the late Neogene of the Slavonian mountains in the southern Pannonian Basin (NE Croatia) , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-570, https://doi.org/10.5194/egusphere-egu24-570, 2024.