EGU24-6690, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-6690
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Parameterizing mesoscale eddy buoyancy transport over sloping topography

Aleksi Nummelin1,2,3 and Pål Erik Isachsen2,4
Aleksi Nummelin and Pål Erik Isachsen
  • 1Finnish Meteorological Institute, Helsinki, Finland
  • 2University of Oslo, Department of Geosciences, Oslo, Norway
  • 3NORCE Norwegian Research Centre AS and Bjerknes Centre for Climate Research, Bergen, Norway
  • 4Norwegian Meteorological Institute, Oslo, Norway
Models that do not resolve the mesoscale eddies tend to parameterize their impacts such that the parameterized transport of buoyancy and tracers reduces the large-scale available potential energy and spreads tracers. However, the parameterizations used in the ocean components of current generation Earth System Models (ESMs) rely on an assumption of a flat ocean floor even though observations and high-resolution modelling show that eddy transport is sensitive to the potential vorticity gradients associated with a sloping seafloor. Using a hierarchy of model complexities, we show that (i) the buoyancy transport coefficient diagnosed from idealized eddy-resolving simulations is indeed reduced over bottom slopes (ii) such reduction can be skillfully captured by a mixing length parameterization by introducing the topographic Rhines scale as a length scale (iii) implementing such a modified `GM' parameterization in non-eddying simulations enhances the strength of thermal wind currents over the bottom slopes. 
 
Testing the new parameterization in realistic global coarse-resolution simulations shows that the impact of topography is most pronounced at high latitudes, enhancing the mean flow strength and reducing temperature and salinity biases. Reducing the buoyancy transport coefficient further with a mean-flow dependent eddy efficiency factor, has notable effects also at lower latitudes and leads to reduction of global mean tracer biases. We find that most of the tracer bias reduction follows from changing the buoyancy transport coefficient (GM), but we also discuss the impact of applying similar changes to the tracer mixing coefficient (Redi).

How to cite: Nummelin, A. and Isachsen, P. E.: Parameterizing mesoscale eddy buoyancy transport over sloping topography, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6690, https://doi.org/10.5194/egusphere-egu24-6690, 2024.

Supplementary materials

Supplementary material file

Comments on the supplementary material

AC: Author Comment | CC: Community Comment | Report abuse

supplementary materials version 1 – uploaded on 15 Apr 2024, no comments