EGU24-6849, updated on 08 Mar 2024
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Validation and simulation of existing and future satellite mid and thermal infrared sensors using a combination of automated validation sites and airborne datasets

Simon Hook1, Bjorn Eng1, Gerardo Rivera1, Robert Freepartner1, Brenna Hatch1, William Johnson1, Dirk Schüttemeyer2, Mary Langsdale3, and Martin Wooster3
Simon Hook et al.
  • 1NASA/JPL, 233-208L Earth Science, California, United States of America (
  • 2ESTEC Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands
  • 3Leverhulme Center for Wildfires, Environment & Society, Department of Geography, King's College London, Bush House Aldwych, London WC2B 4BG, UK

Post-launch calibration and validation over the lifetime of missions is needed to ensure that any long-term variation in an observation, e.g. an area getting hotter, can be unambiguously assigned to a change in the Earth system, rather than a change in calibration. Such activities enable measurements from different satellites to be inter-compared and used seamlessly to create long-term multi-instrument/multi-platform data records, which serve as the basis for large-scale international science investigations into topics with high societal or environmental importance. In order to help address this need we have established a set of automated validation sites where the necessary measurements for validating mid and thermal infrared data from spaceborne and airborne sensors are made every few minutes on a continuous basis. We have also conducted multi-agency airborne campaigns with thermal infrared sensors to develop precursor datasets for future NASA and ESA missions to acquire mid and thermal infrared data as well as characterize variability within the automated validation sties.

We have established automated validation sites at several locations including Lake Tahoe CA/NV, Salton Sea CA and La Crau, France. The Lake Tahoe site was established in 1999, the Salton Sea site was established in 2008 and the La Crau site was established in 2023. Each site has one or more custom-built highly accurate (50mK) radiometers measuring the surface skin temperature. All the measurements are made every few minutes and downloaded hourly via a cellular modem.

Data from the sites have been used to validate numerous satellite instruments including the Advanced Very High Resolution Radiometer (AVHRR) series, the Along Track Scanning Radiometer (ATSR) series, the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER), the Landsat series, the Moderate Resolution Imaging Spectroradiometer (MODIS) on both the Terra and Aqua platforms, the Visible Infrared Imaging Radiometer Suite (VIIRS) and the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS). In all cases the standard products have been validated including the standard radiance at sensor, radiance at surface, surface temperature and surface emissivity products.

Over the last several years NASA and ESA have conducted multiple joint airborne campaigns to obtain data at high spatial and spectral resolutions to simulate future satellite sensors as well as characterize potential validation sites, such as the La Crau validation site. These data are currently being used to simulate the ASI/NASA Surface Biology and Geology (SBG) thermal infrared (TIR) mission, the ESA Land Surface Temperature Monitoring (LSTM) mission and the ISRO/CNES Thermal infraRed Imaging Satellite for High-resolution Natural resource Assessment (TRISHNA) mission.

We will present results from the validation of the mid and thermal infrared data using the automated validation sites as well as results from the recent airborne campaigns.

How to cite: Hook, S., Eng, B., Rivera, G., Freepartner, R., Hatch, B., Johnson, W., Schüttemeyer, D., Langsdale, M., and Wooster, M.: Validation and simulation of existing and future satellite mid and thermal infrared sensors using a combination of automated validation sites and airborne datasets, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6849,, 2024.