EGU24-700, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-700
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

The British Virgin Islands in the Caribbean Evolution: Petrogeochemical and geochronological constraints

Noémie Bosc1, Delphine Bosch1, Mélody Philippon2, Mélanie Noury3, Olivier Bruguier1, Lény Montheil1, Douwe van Hinsbergen4, and Jean Jacques Cornée1
Noémie Bosc et al.
  • 1Geosciences Montpellier, Montpellier university, CNRS, France (noemie.bosc@umontpellier.fr)
  • 2Geosciences Montpellier, Université des Antilles, CNRS, Pointe-à-Pitre, Guadeloupe French West Indies
  • 3Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Hermosillo, Sonora, Mexico
  • 4Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands

The British Virgin Islands (BVI) is a NE-SW trending archipelago located in the northeastern corner of the Caribbean plate. Exposing volcanic arc rocks, it is located at the junction between the old arc of the Greater Antilles to the Northwest and the active arc of the Lesser Antilles to the South. The BVI are a key location to study the geodynamical evolution of the northeastern boundary of the Caribbean plate. In order to understand its significance into the overall Caribbean evolution, a set of 16 igneous samples from seven islands was studied for petrology, geochemistry (major and trace elements, and Pb-Sr-Nd-Hf isotopes), thermobarometry (Al-in-hornblende) and U-Pb geochronology on accessory minerals (zircon, titanite and apatite). The studied rocks show a typical volcanic arc signature and correspond to a calc-alkaline series, differentiated along a NE/SW gradient. Trace elements patterns show strong negative HFSE anomalies and LILE enrichments. ɛHfi are homogeneous ranging from +11.4 to +14.1 typical of a MORB-type mantle. Magmas were thus originated from a homogeneous mantle corresponding to the mantle wedge, with participation of a slab component. The slab component contribution is estimated to be less than 2% and is dominated by aqueous fluids, except for Peter and Norman Islands. U-Pb ages emphasize an active magmatic period spanning between ~43 Ma and ~30 Ma along a NE-SW younging gradient. This age range and strong geochemical similarities with arc lavas exposed in St Martin and St Barthélémy suggest that the BVI represent the northern continuity of the Eo-Oligocene extinct branch of the Lesser Antilles arc. Crystallization depth of the studied plutonic bodies, estimated by thermobarometric constraints, supports a NE-SW increasing emplacement depth from ~7km to ~13km. The oldest plutonic bodies at NE thus experienced less total exhumation than the youngest plutonic bodies at SW (maximum rate of ~2.2 mm/yr at SW and minimum rate of ~0.2 mm/yr at NE). From Eocene to Oligocene it has been recently demonstrated that the block from Puerto Rico-Virgin Islands (PRVI) rotated 45° counter clockwise (Montheil et al., 2023). Previous thermochronological data shows that the BVI exhumation occurred synchronously along the archipelago between ~25 and ~21 Ma (Román et al., 2021). Together these observations suggest a regional tilt of the BVI block that occurred between plutons crystallisation and their exhumation at ~2 km depth. We propose that the tilting and the fast exhumation of the BVI, that are synchronous with counterclockwise rotation of the PRVI block, are the consequence of subduction locking generated by the Bahamas bank accretion to the northeastern Caribbean plate.

How to cite: Bosc, N., Bosch, D., Philippon, M., Noury, M., Bruguier, O., Montheil, L., van Hinsbergen, D., and Cornée, J. J.: The British Virgin Islands in the Caribbean Evolution: Petrogeochemical and geochronological constraints, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-700, https://doi.org/10.5194/egusphere-egu24-700, 2024.