GD4.1 | Initiation and evolution of subduction: dynamics, volatiles and melts from the surface to the deep mantle
EDI
Initiation and evolution of subduction: dynamics, volatiles and melts from the surface to the deep mantle
Co-organized by GMPV4/SM4/TS2
Convener: Ágnes KirályECSECS | Co-conveners: Jeroen van Hunen, César R. Ranero, Oğuz H Göğüş, Taras Gerya
Orals
| Fri, 19 Apr, 10:45–12:30 (CEST), 14:00–15:45 (CEST), 16:15–18:00 (CEST)
 
Room D1
Posters on site
| Attendance Thu, 18 Apr, 16:15–18:00 (CEST) | Display Thu, 18 Apr, 14:00–18:00
 
Hall X2
Posters virtual
| Attendance Thu, 18 Apr, 14:00–15:45 (CEST) | Display Thu, 18 Apr, 08:30–18:00
 
vHall X2
Orals |
Fri, 10:45
Thu, 16:15
Thu, 14:00
Subduction drives plate tectonics, generating the major proportion of subaerial volcanism, releasing >90% seismic moment magnitude, forming continents, and recycling lithosphere. Numerical and laboratory modelling studies have successfully built our understanding of many aspects of the geodynamics of subduction zones. Detailed geochemical studies, investigating compositional variation within and between volcanic arcs, provide further insights into systematic chemical processes at the slab surface and within the mantle wedge, providing constraints on thermal structures and material transport within subduction zones. However, with different technical and methodological approaches, model set-ups, inputs, and material properties, and in some cases conflicting conclusions between chemical and physical models, a consistent picture of the controlling parameters of subduction-zone processes has so far not emerged.

This session aims to follow subducting lithosphere on its journey from the surface down into the Earth's mantle and to understand the driving processes for deformation and magmatism in the over-riding plate. We aim to address topics such as: subduction initiation and dynamics; changes in mineral breakdown processes at the slab surface; the formation and migration of fluids and melts at the slab surface; primary melt generation in the wedge; subduction-related magmatism; controls on the position and width of the volcanic arc; subduction-induced seismicity; mantle wedge processes; the fate of subducted crust, sediments and volatiles; the importance of subducting seamounts, LIPs, and ridges; links between near-surface processes and slab dynamics and with regional tectonic evolution; slab delamination and break-off; the effect of subduction on mantle flow; and imaging subduction zone processes.

With this session, we aim to form an integrated picture of the subduction process and invite contributions from a wide range of disciplines, such as geodynamics, modelling, geochemistry, petrology, volcanology, and seismology, to discuss subduction zone dynamics at all scales from the surface to the lower mantle, or in applications to natural laboratories.

Orals: Fri, 19 Apr | Room D1

Chairpersons: César R. Ranero, Taras Gerya, Ágnes Király
10:45–10:46
10:46–10:56
|
EGU24-4189
|
Highlight
|
On-site presentation
Fernando Martinez

Subduction initiation remains one of the least understood global processes of plate tectonics.  Prominent models have been cast in terms of two broad classes: “spontaneous” cases due to lithospheric gravitational instabilities and “induced” cases due to forced plate convergence. Yet gravitationally unstable lithosphere is old, strong, and difficult to begin to bend into a subduction zone and convergent forces necessary to begin subduction are often too large given the plates involved. These models also consider the asthenospheric mantle as passive, even though relative motion between slabs and the asthenosphere has long been regarded as a strong control on subduction dynamics. Here I propose that subduction-transform edge propagator (STEP) faults can initiate subduction depending on the absolute motion of the STEP fault with respect to the asthenosphere. STEP faults form where subduction zones end and the subducting plate tears forming a down flexed transcurrent plate boundary at the surface shearing against the adjacent rear arc lithospheric plate. However, STEP faults are not simple transcurrent boundaries. Absolute motion of the down flexed STEP fault edge with respect to the surrounding asthenosphere can produce a strong “sea anchor” force that either continues to bend the edge downward, initiating subduction, or opposes slab bending, inhibiting subduction. In the south Pacific, the southern end of the New Hebrides Trench and the northern end of the Tonga Trench are type-example STEP faults with opposite senses of dip but both moving northward with respect to the asthenosphere. The northward dipping New Hebrides STEP fault moves northward in a mantle reference frame creating a strong asthenospheric flow against the STEP fault edge, inducing active subduction at the Matthew-Hunter trench. In contrast, the Tonga STEP fault dips southward but also has a northward component of motion with respect to the mantle. Asthenosphere thus flows southward beneath the down flexed Tonga STEP fault edge opposing further bending.  Subduction does not initiate at the Tonga STEP fault despite a ~100 Myr age contrast between the Pacific and north Fiji and Lau basin lithospheres. Since absolute plate motions reflect the sum of all forces acting on the entire lithospheric plate, a strong sea anchor mantle force may be generated at a STEP fault edge, initiating subduction (or inhibiting it), even where lithosphere is old, strong, and resists bending and without requiring large convergent forces between plates, overcoming these objections to previous models.

How to cite: Martinez, F.: Subduction initiation (or not) due to absolute plate motion at STEP faults: The New Hebrides vs. the Tonga examples, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4189, https://doi.org/10.5194/egusphere-egu24-4189, 2024.

10:56–11:06
|
EGU24-6290
|
On-site presentation
Jifei Han, Nick Rawlinson, Hrvoje Tkalčić, Caroline Eakin, Mike Coffin, and Joann Stock

Subduction is a key process in both the recycling and creation of new oceanic crust, the exchange of water between the Earth, oceans and atmosphere, and the distribution of earthquakes and volcanoes. However, the formation of new subduction zones - or subduction initiation - remains a poorly understood process. Macquarie Island, which lies along the Macquarie Ridge Complex (MRC) that forms the transpressional boundary between the Australian and Pacific plates in the southwest Pacific, is one location on Earth where subduction initiation is thought to be taking place. Several studies have suggested that the northern and southern segments of the MRC may be experiencing incipient subduction, but it is unclear what is happening in the central section, which includes Macquarie Island.


Indirect evidence for at least incipient subduction beneath Macquarie Island includes (i) ophiolite (oceanic crust) being exposed above sea level; (2) extreme topography, with Macquarie Island lying  ~5 km above the surrounding ocean basin; (3) thrust faults on either side of the island. To help investigate whether subduction may have been initiated in the neighborhood of Macquarie Island, we analyze teleseismic body wave data recorded by a network consisting of land stations and oceanic bottom seismometers deployed between October 2021 and November 2022. We extract teleseismic P-wave arrival time residuals across the combined array from ~20 events with epicentral distances between 30 and 90 degrees and invert them using FMTOMO to obtain 3-D P-wave velocity anomalies in the upper mantle. Preliminary results indicate that higher velocities are present to the east of the MRC in the vicinity of Macquarie Island, although further refinement is required before a detailed interpretation is possible.

How to cite: Han, J., Rawlinson, N., Tkalčić, H., Eakin, C., Coffin, M., and Stock, J.: Can we identify evidence of subduction initiation beneath the Macquarie Ridge Complex from teleseismic tomography?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6290, https://doi.org/10.5194/egusphere-egu24-6290, 2024.

11:06–11:16
|
EGU24-10345
|
ECS
|
On-site presentation
Patricia Cadenas Martínez and César R. Ranero

The inception of a subduction system delineates the birth of a destructive plate boundary that constrains the closure of Earth´s oceans. Material and structures of the transient stage between the reactivation of a passive margin and the establishment of a self-sustaining subduction zone are rarely-preserved in the geological record of fossil subduction zones, and natural examples of currently ongoing subduction initiation are scarce. Reported Cenozoic fossil examples have been interpreted to illustrate successive immature stages of plate rupture, underthrusting and the formation of a volcanic arc, all prior to the formation of a mature self-sustained subduction zone. However, many uncertainties about the processes and the kinematics of subduction initiation remain, due to the scarcity- and lack of recent studies- of examples recording the plate rupture and decoupling, the transition to underthrusting, and the formation of the mega-thrust fault.

We use seismic images to study active subduction initiation and plate-boundary propagation in the Sulu and Celebes seas located in SE Asia. The two basins formed in Paleogene to Lower Miocene time and since possibly late Miocene, a phase of contractional deformation has led to the creation of the subduction trenches. The Sulu Trench is growing and laterally propagating along the SE margin of the Sulu Sea basin, and the Cotobato and North Sulawesi trenches propagate along the northeastern and southern margins of the Celebes Sea basin.

We reprocessed and interpreted >4857 km of 2D seismic reflection profiles that image the structure across three active trenches and the regions where the trenches are laterally propagating and display likely related deformation. We identified and mapped subduction-related structural domains of the downing and overriding plates. The megathrust plate boundary reaching the surface separates a trench filled with turbidites from the thrusts sheets of accretionary prisms, overlain with a forearc basin. The images show pre-existing faults and first-order seismo-stratigraphic horizons along the continental margins away from the trench, and the deformation structures associated to their reactivation and possibly linked to either lateral propagation of the subduction trenches or perhaps the local formation of a new trench.

The images illustrate the transition from diffuse deformation to two decoupled plates and to along-strike structural variations of subduction-related structural domains. We show for the first time how the three trenches record the spatial variability of currently active deformation associated to stages of passive margin reactivation, subduction initiation, propagation and progression. These results provide novel insights to further investigate and constrain unsolved questions about the initiation and development of subduction zones.

How to cite: Cadenas Martínez, P. and R. Ranero, C.: Subduction initiation, propagation and progression recorded along the Sulu and Celebes seas (SE Asia), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10345, https://doi.org/10.5194/egusphere-egu24-10345, 2024.

11:16–11:26
|
EGU24-4122
|
ECS
|
On-site presentation
Xin Zhou, Nicolas Coltice, and Paul Tackley

Subduction initiation (SI) creates new subduction zones and provides driving forces for plate tectonics, being a key process of theplate tectonic regime on Earth. Although SI has been extensively studied in 2D regional numerical models, obtaining a global perspective on SI remains elusive. Geological observations and plate reconstructions both suggest that SI is coeval with the global or local plate reorganizations. The tectonic plate reorganizations are marked by rapid changes of plate motions occurring over a few million years and are recurrent throughout Earth’s history.  One of the most well-known plate reorganization events occurred at approximately 53-47 Ma ago, characterized by the bending of Hawaii-Emperor Seamount Chain. Simultaneously, several SI events occurred in the Pacific Plate, such as Izu-Bonin-Mariana (~52 Ma) and Tonga-Kermadec (~50 Ma). The relationship between SI and plate reorganizations, as well as their collective impacts on continental evolution, is poorly understood. It is also unclear whether these processes are dominated  by a “top-down” or “bottom-up” mechanism. This study is committed to exploring the interaction between SI and plate reorganizations using 3D global mantle convection models. We reproduce SI coeval with plate reorganizations in these numerical models. We analyze the changes of stress distribution in the lithosphere during the plate reorganizations and their effects on SI. A variety of different interplays between SI and tectonic plates reorganizations have been identified based on their chronology and driving mechanisms. We also investigate their influences on the supercontinental breakup and assembly. Two major plate reorganization events, occurring at 100 Ma and 50 Ma ago respectively, are used to compare with the numerical modeling results. The effects of key parameters, such as lithosphere thickness and strength, will be examined. Plate reconstruction models will also be included to study the interaction between SI and plate reorganizations in the future.

How to cite: Zhou, X., Coltice, N., and Tackley, P.: Investigating Interactions between Subduction Initiation and Plate Reorganizations From A Global Perspective, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4122, https://doi.org/10.5194/egusphere-egu24-4122, 2024.

11:26–11:36
|
EGU24-5261
|
Virtual presentation
Yossi Mart

Oceanic Core Complexes (OCCs) are peridotite and serpentinite rich geological features, commonly located at the external intersections of slow-spreading mid-oceanic accreting ridges (MORs) with transform faults (TFs). The peridotites of these complexes are commonly considered to derive from the upper mantle while the serpentinites are attributed to chemical weathering that affected rock-mass during its ascent through the lithosphere. Description of cores drilled into OCCs commonly describes in detail the various peridotites but ignores the serpentinites, which are considered secondary additions. However, this presumption seems flawed due to the absence of high-pressure rocks such as eclogites, therefore it seems that the origin of the various peridotite minerals were formed concurrently with the serpentinites from pyroxenes under constrains of moderate geological pressures and temperatures, and various availabilities of H2O.

The intersections between slow MORs and TFs, where most OCCs occur, are characterized by steep thermal gradients and by distinct density contrasts. The thermal gradients in the upper crust of the MOR axial rift are nearly 1300/km, due to the shallow depth of the upper mantle there. The density of the fresh basaltic lava at the MOR is ca. 2700 kg/m3, because the temperature of the fresh basalt is some 1100oC. However, the density of the older basalt that builds the older plate across the transform fault is 2900 kg/m3. It is plausible that at fast-spreading MORs the plate juxtaposed against the active spreading rift would still be warm and its density would too light to initiate the spontaneous subduction. Tectonic experiments showed that at least 200 kg/m3 density contrast between lighter and denser crustal slabs would be sufficient to initiate spontaneous subduction. Furthermore, geochemical experimentation shows that under 500oC temperatures, namely at depths of ca. 4 km under the MOR, minerals of the pyroxene group in the oceanic basalts, are likely to be altered either into peridotites under dry conditions or into serpentinites under wet constraints at such temperature. These constraints suggest that the serpentinites in OCCs are generic and not erosional features, and their light densities and plasticity could have generated the diapiric ascent of the OCCs. The density contrast between the fresh and the old basalts, juxtaposed at the ridge – transform junctions, could take place if the spreading rate of the MOR is slow and the older slab has the time required to cool and reach the density of 2900 kg/m3.

 Keywords: Ridge-transform intersection, oceanic core complexes, spontaneous subduction, peridotites, serpentinites, diapirs.

How to cite: Mart, Y.: Oceanic core complexes: Serpentinite diapirs at slow ridge - transform fault intersections?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5261, https://doi.org/10.5194/egusphere-egu24-5261, 2024.

11:36–11:46
|
EGU24-253
|
ECS
|
Virtual presentation
Xiuwei Jiang and Shaocong Lai

Abstract: The study of K-enriched intrusive rocks is essential for deciphering mantle metasomatism beneath active continental arcs. In this contribution, high-precision zircon U‒Pb‒Hf isotope, whole-rock geochemistry, Sr‒Nd isotope, and mineral chemistry analyses were performed to evaluate the petrogenesis and geodynamic system of the Yunnongfeng intrusion on the southwestern margin of the Yangtze Block. The Yunnongfeng intrusion consists of a high-K to shoshonitic rock assemblage with variable lithology from gabbro-diorite to granite. Zircon U‒Pb dating gives concordant crystallization ages of ca. 782.5 ± 3.8 Ma for gabbro-diorite, ca. 774 ± 4.1 and 776 ± 4.1 Ma for diorite, ca. 770 ± 4.7 Ma for quartz monzonite, ca. 763 ± 3.4 Ma for quartz syenite, and ca. 764 ± 16 Ma for granite. These samples also show similar Sr‒Nd, and Lu‒Hf isotopic compositions, implying a common magma source. The similar crystallization age and regular variation of major and trace element contents suggest that these rocks were formed through fractional crystallization of cogenetic primitive mantle magmas. The enriched εNd(t) (−5.7 to −5.1) and εHf(t) (−6.7 to −1.2) values, high Rb/Y and Th/La ratios, slight Nd‒Hf decoupling, and high-K and Th contents demonstrate that their lithospheric mantle source was enriched by slab-related fluid and sediment-related melt. The samples also exhibit remarkable enrichment in large-ion lithophile elements and depletion in high-field-strength elements, indicative of subduction-related arc magmatism. Taking into account previous studies, we suggest that the western margin of the Yangtze Block experienced a long-term subduction process during the Neoproterozoic, and the Yunnongfeng intrusion formed in an extensional back-arc basin. Based on the K-enriched mafic‒intermediate rocks from the western margin of the Yangtze Block commonly show high K2O/Na2O, Rb/Sr, low Ba/Rb ratios, and enriched εNd(t) values, our study, coupled with numerous previous reports, proposes that the K-enrichment resulted from the breakdown of phlogopite, owing to subduction-related sediment melt reacting with peridotite in the mantle source area.

Keywords: Potassium-enriched intrusive rocks; Southwestern Yangtze Block; Fractional crystallization; Lithospheric mantle; Sediment melt

How to cite: Jiang, X. and Lai, S.: Petrogenesis of Neoproterozoic high-K intrusion in the southwestern Yangtze Block, South China: Implication for the recycled subducted-sediment in the mantle source, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-253, https://doi.org/10.5194/egusphere-egu24-253, 2024.

11:46–11:56
|
EGU24-339
|
ECS
|
On-site presentation
fanrong lu and junfeng zhao

  Yanshanian magmatic rocks are widely distributed in the northern margin of the South China Sea and the continental margin of South China. These magmatic rocks are generally believed to have been formed by the subduction of the Paleo-Pacific plate to the South China Plate from Late Jurassic to Early Cretaceous. Due to the small number of wells drilled to the basement, most predecessors have studied on the distribution range, origin and tectonic setting of Yanshanian magmatic rocks by geophysical means(magnetic anomalies and seismic data). At present, The reported ages of basement magmatic rocks in the Pearl River Mouth Basin are mainly concentrated in Zhu 1 Depression and Panyu Low Uplift, and there is no petrological evidence in other regions.Baiyun Depression, as the largest hydrocarbon generating depression in the Pearl River Mouth Basin, has important oil and gas significance. In order to better define the spatial and temporal distribution of Yanshanian magmatic rocks, nearly 30 basement drilling samples in the periphery of Baiyun Depression and 8 onshore outcrop samples were collected. The genesis and tectonic significance of Yanshanian magmatic rocks are discussed through 76 thin sections, 7 U-Pb zircons dating, 26 major elements analysis, 16 trace elements analysis and 4 Sr-Nd-Pb isotope analysis.The results show that the magmatic rocks in the study area are concentrated in the J3-K1 and mainly developed S-type granite. These magmatic rocks are basically derived from the crust, and a few magmatic rocks or a small amount of mantle-derived materials are mixed in. The trace element discrimination diagram indicates that all samples belong to volcanic island arc type granite. The distribution curve of rare earth elements shows that light rare earth elements are enriched and heavy rare earth elements are low and stable.According to the above results, these magmatic rocks are part of the NE-trending continental margin magmatic arc formed by subduction and accretion of the paleo-Pacific plate to the South China Plate during the Yanshanian.Combined with the previous research results, it is believed that the extensional action caused by subduction and retreat of the Paleo-Pacific plate migrated to the ocean direction in the late stage of tensile rupture, and magmatism also migrated to the ocean, so the intrusion time of the magmatic rocks from continental to marine along the NW-SE direction gradually became late.This study adds important petrological evidence to clarify the genesis and tectonic setting of Yanshanian magmatic rocks in the northern margin of the South China Sea and the South China continent, and also has important application value for oil and gas exploration of buried hills in the Pearl River Mouth Basin.

How to cite: lu, F. and zhao, J.: Genesis and Tectonic Setting of Yanshanian Magmatic Rocks in the Northern Margin of South China Sea, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-339, https://doi.org/10.5194/egusphere-egu24-339, 2024.

11:56–12:06
|
EGU24-10243
|
ECS
|
On-site presentation
Bin Zhang, Yunpeng Dong, Shengsi Sun, and Dengfeng He

        The East Kunlun orogenic belt represents a typical accretionary orogenic belt and has undergone an evolutionary process from the Proto-Tethys to the Paleo-Tethys oceans. The Late Triassic period witnessed the East Kunlun transitioning into the post-collisional extensional tectonic setting. However, there is ongoing debate regarding the dynamic mechanism responsible for the post-collisional extension. This study conducts the lithological, geochronological, and geochemical characteristics of the Yeniugou gabbros to shed light on the dynamic mechanism. Zircon geochronology suggests that the gabbros formed in the Late Triassic, ca. 207–209 Ma. Furthermore, the positive εHf (t) values (0.1–5.7), the relatively high values of Mg# (42.2–59.4), as well as the elevated contents of the compatible element (V, Cr, Co, Ni), suggest a mantle source with the contributions from asthenospheric mantle constituents. Additionally, gabbros are enriched in LREE and LILEs (Rb, Ba, Th, U, Sr), and depleted in HFSEs (i.e., Nb, Ta, Ti, Zr), suggesting the incorporation of arc-related enrichment components. The higher values of La/Sm, Th/Yb, Th/La, and lower values of Ba/Th, Ba/La, and Lu/Hf indicate that the enriched components are derived from the melting of the terrigenous sediment. The higher Zr/Y ratios, Nb contents, moderate Zr, Y contents, and the positive correlation between clinopyroxene Alz and TiO2, imply that these rocks were formed within an extensional tectonic setting, where upwelling of asthenospheric mantle caused partial melting of metamorphosed lithospheric mantle. Our new investigations support the interpretation that E-KOB experienced the thickening lithospheric delamination during the Late Triassic.

How to cite: Zhang, B., Dong, Y., Sun, S., and He, D.: Petrogenesis and tectonic implications of the late Triassic gabbro in southern East Kunlun Orogenic Belt, northern Tibetan Plateau, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10243, https://doi.org/10.5194/egusphere-egu24-10243, 2024.

12:06–12:16
|
EGU24-21046
|
ECS
|
On-site presentation
Alex Churchus, Oliver Nebel, Yona Jacobsen, Xueying Wang, Massimo Raveggi, Marianne Richter, and Roland Maas

Oceanic gabbros represent a voluminous part of oceanic crust and are to a large degree cumulative mineral assemblage composed of olivine-pyroxene-feldspar and iron oxides. As such, oceanic gabbros represent a large Fe isotope reservoir in the global Fe cycle. During recycling into the mantle, oceanic gabbros undergo metamorphic reactions but are often considered a small contributor to the subduction component in arcs (e.g., slab-derived fluids) due to their relatively dry and refractory nature. Instead, fluids released from serpentinite as a result of slab devolatisation are considered to be the main source of deep mantle wedge fluids and considerably contribute to arc-lava chemistry and the redox state of metasomatised mantle wedge. However, serpentinite-derived fluids will, by default, pass through overlying gabbroic sequences when ascending to the mantle wedge with a potentially considerable contribution to the Fe isotope budget of the mantle wedge and arc lavas.

Here, we investigate the Fe isotopic signature of gabbroic rocks exposed on the seafloor along the Southwest Indian Ridge and collected during IODP scientific ocean drilling expedition leg 118 from the Atlantis Bank Gabbro Massif (IODP Site 735B). Site 735B is composed of intrusive lower crustal and upper mantle rock exhumed to the surface by detachment faulting. Iron was chemically leached, simulating passing fluids, with both leachate and residue analysed for their Fe isotope composition. Our samples display large variation in isotopic composition ranging from mantle to extreme values of δ57Fe = -0.07 to +0.68‰ (relative to IRMM-524a) for the leachate, and MORB-like δ57Fe = -0.1 to +0.21‰, for the residue, respectively. Our results imply that the leached isotopically heavier Fe from oceanic gabbros can be a significant contributor to the Fe isotope composition of the subduction component in arcs and counterbalance the light Fe isotopes derived from serpentinites. Considering the oxidation state of Fe in magnetite, this may further add to the oxidized nature of arc lavas. If such fluids remain in the mantle, they can potentially be a very heavy Fe isotope reservoir, which may explain some exotic signatures observed in ocean island lavas or transition zone diamond inclusions. Gabbroic residues deprived of any such leachate resembles Fe isotope signatures of the upper mantle and MORB and thus does not change the Fe isotope composition of the mantle significantly after subduction. 

How to cite: Churchus, A., Nebel, O., Jacobsen, Y., Wang, X., Raveggi, M., Richter, M., and Maas, R.: On the iron isotope systematics of subducted oceanic gabbros, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-21046, https://doi.org/10.5194/egusphere-egu24-21046, 2024.

12:16–12:26
|
EGU24-8760
|
ECS
|
On-site presentation
Wenyong Duan, James Connolly, Peter van Keken, Taras Gerya, and Sanzhong Li

Oceanic plates descending into subduction zones transport a significant amount of oxidized material to both the subduction zone and the Earth's deeper layers (Wood et al. 1990). However, the specific mechanism of mass transfer and the corresponding flux released at different depths remains unclear. Through the use of numerical modeling and a coupled geochemical database, we examined redox dynamics in subduction zones, particularly focusing on Mariana-type subduction zones, representative of the modern plate tectonic regime (Yao et al., 2021).

Our findings highlight two primary mechanisms in the mantle oxidation processes related to subduction. Firstly, desulfurization enables subduction fluids to carry substantial oxidation fluxes into the sub-arc mantle. Mass balance calculations emphasize the sufficiency of these fluxes in oxidizing both the arc magma and mantle wedge, with the hydrated mantle being the primary fluid contributor, followed by the altered oceanic crust. Secondly, partial melting of slab-top rocks, where Fe3+-rich melts from sediments and altered oceanic crust play a predominant role in the oxidation of the back-arc mantle. Importantly, during Mariana-type subduction, the majority of oxidation fluxes penetrate the deeper mantle with subducting slabs. According to our models, we illustrate that during the modern era of plate tectonics, the oxidation fluxes generated by Mariana-type subduction zones had a significant global impact on Earth's mantle redox evolution and the oxygenation of our planet.

References

Wood, B. J., Bryndzia, T., Johnson, K. E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248, 337-345 (1990).

Yao, J., Cawood, P. A., Zhao, G., Han, Y., Xia, X., Liu, Q., Wang, P. Mariana-type ophiolites constrain the establishment of modern plate tectonic regime during Gondwana assembly. Nat. Commun. 12(1), 4189 (2021).

How to cite: Duan, W., Connolly, J., van Keken, P., Gerya, T., and Li, S.: Mantle Oxidation Driven by the Redox Dynamics of the Mariana-Type Subduction, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8760, https://doi.org/10.5194/egusphere-egu24-8760, 2024.

12:26–12:30
Lunch break
Chairpersons: Jeroen van Hunen, Ágnes Király, Taras Gerya
14:00–14:10
|
EGU24-10454
|
On-site presentation
Peter E. van Keken, Cian R. Wilson, and Geoff A. Abers

Subduction of oceanic slabs causes the influx of fluids through hydrated phases. Fluids are released by metamorphic dehydration reactions particularly when the slab comes in contact with the hot mantle wedge at depths greater than ~80 km. Fluid release can be diverse and occur at different depths inside the oceanic slab with sediments and uppermost oceanic crust generally dehydrating before the serpentinized mantle and gabbroic sections.

Significant progress has been made in recent years on geophysical imaging of subduction zones that highlight the thermal structure, the location of metamorphic dehydration reactions, and the presence of fluids in slab and mantle wedge (e.g., Kita et al., Tectonophysics, 2010; van Keken et al., Solid Earth, 2012; Shiina et al., GRL, 2013; Pommier and Evans, Geosphere, 2017, Abers et al., Nature Geoscience, 2017). In a complimentary fashion, geodynamical modeling provides first principles constraints on how fluids are released and transported.

Using a simplified modeling geometry, Wilson et al. (EPSL, 2014) showed the importance of compaction pressure gradients as an oft cited, but also frequently ignored, driving force for fluids in the slab. The inclusion of compaction pressure gradients causes the fluids to both be driven from their source to the arc and flow up in part parallel to the slab surface, explaining to at least some extent geophysical observations.

We have modeled the effects of compaction pressure gradients in a global set of subduction zone models (van Keken and Wilson, PEPS, 2023) and show that focusing of the fluids below the typical arc location (at where the slab is at about 100 km depth) is a common feature and that therefore the compaction pressure effects, along with the geometry of the cold corner in the mantle wedge, can naturally explain the position of the arc above subduction zones globally.

How to cite: van Keken, P. E., Wilson, C. R., and Abers, G. A.: Compaction pressure goes global: Investigating fluid release and flow in subduction zones worldwide, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10454, https://doi.org/10.5194/egusphere-egu24-10454, 2024.

14:10–14:20
|
EGU24-1044
|
ECS
|
On-site presentation
Açelya Ballı Çetiner, Oğuz Göğüş, Jeroen van Hunen, and Ebru Şengül Uluocak

Numerous previous studies have been conducted in the North China Craton to investigate its anomalously thin lithosphere, high magmatism, and extensional tectonics along its eastern margin. Based on petrological analyses it has been suggested that the cratonic mantle lost its root (~100 km) with multiple tectonic processes during the late Jurassic – Early Cretaceous. The weakening and erosion of the North China craton is often attributed to its high water content and lower viscosity of the lithosphere associated with the movement and position of the Paleo-Pacific plate. However, other mechanisms and control parameters for the craton destruction have been proposed, and the thinning of the North China craton remains an enigmatic process.

To have a better understanding of the dynamics of the lithospheric deformations beneath the North China Craton that changes over time, we conducted a series of 2D geodynamic models. Specifically, we investigate the impact of hydration-induced processes on the lithosphere and the overriding plate and focus on parameters such as external tectonic forcing, the rheology and the strength of the overriding plate. Moreover, the effect of the angular position of the oceanic plate, and the existence of the mid-lithosphere discontinuities was also examined. Our results reveal that the destruction of North China Craton is more complex and heterogeneous than is often assumed in modelling studies. Furthermore, we find that without significant weakening, the mantle lithosphere is unlikely to delaminate. Extensive hydrous weakening may account for this, but external tectonic forcing in combination with non-linear rheology and eclogitization of the lower crust may have played an important role too.  

How to cite: Ballı Çetiner, A., Göğüş, O., van Hunen, J., and Şengül Uluocak, E.: The role of hydration-induced processes in the deformation of the North China craton, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1044, https://doi.org/10.5194/egusphere-egu24-1044, 2024.

14:20–14:30
|
EGU24-4972
|
On-site presentation
Weiling Zhu and Yingfeng Ji

Previous subduction thermal models are inconsistent with the values of forearc heat flow (50-140 mW/m2) and global P‒T conditions of exhumed rocks, both suggesting a shallow environment 200~300°C warmer than model predictions. Here, we revaluate these problems in Kuril-Kamchatka using 3-D thermomechanical modeling that satisfies the observed subduction history and slab geometry, while our refined 3-D slab thermal state is warmer than that predicted by previous 2-D models and better matches the observations involving exhumed rock records. We show that warmer slabs create hierarchical slab dehydration fronts at various forearc depths, causing fast and slow subduction earthquakes. The multilayered subduction regime and a large downdip thermal gradient of > 5°C/km beneath Kuril-Kamchatka indicate a stratified characteristic effect on slab dehydration efficiency. We conclude that fast-to-slow subduction earthquakes all play a key role in balancing plate coupling energy release on megathrusts trenchward of high P‒T volcanism.

How to cite: Zhu, W. and Ji, Y.: Reestimated slab dehydration fronts in Kuril-Kamchatka using updated three-dimensional slab thermal structure, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4972, https://doi.org/10.5194/egusphere-egu24-4972, 2024.

14:30–14:40
|
EGU24-16410
|
ECS
|
Highlight
|
On-site presentation
Alexis Gauthier, Tiphaine Larvet, Laetitia Le Pourhiet, and Isabellle Moretti

Dihydrogen (H2) is a promising decarbonized energy source, but traditional artificial production methods emit CO2 and/or consume a lot of energy. However, there are natural sources of H2 on Earth originating from diverse geochemical processes. A recent study above the Nazca plate subduction in the Andes, detected variations in the H2 emanation function on the slab dip angle. This H2 release is likely the result of peridotite hydration in the mantle wedge, notably through serpentinization. The water required for peridotite hydration is sourced from dehydration of the subducting plate as it sinks into the Earth's mantle.

This study aims to understand the influence of slab dip angle on H2 production in the mantle wedge using the pTatin2D code. Fluid circulation were implemented based on two principles:

  • The hydration and dehydration capacity of rocks under varying pressure and temperature conditions is predicted using tables from the thermodynamic software PerpleX.
  • The velocity of free water is equivalent to that of surrounding rocks, with a vertical component related to percolation.

Numerical simulations show that in the case of flat subduction, the mantle hydration zone, where H2 is produced, is wide and extending up to 500 km from the trench. On the other hand, in the case of a steep subduction, the zone is narrower, and is located between the trench and the volcanic arc. Magma formation competes with H2 generation for the use of water released from the subducting plate. During the transition from steep to flat subduction, the mantle hydration zone undergoes widening while the volcanic zone migrates significantly away from the trench. This transition may also trigger oceanic crust melting, resulting in a shift in magma composition before the volcanism intensity diminishes and then disappears.

How to cite: Gauthier, A., Larvet, T., Le Pourhiet, L., and Moretti, I.: H2 formation in subduction zone, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16410, https://doi.org/10.5194/egusphere-egu24-16410, 2024.

14:40–14:50
|
EGU24-20470
|
On-site presentation
Ivan Savov, Samuele Agostini, CeesJan DeHoog, William Osborne, Andrew McCaig, Detlef Rost, Jeff Ryan, Roy Price, Dyonisis Foustoukos, Haiyang Liu, and International Ocean Discovery Program Expedition 399 Sci. Party

We will present whole rock and mineral chemistry insights into the systematics of light elements (B, Li) and their isotopes during the serpentinization processes at both divergent and convergent plate margins. For the divergent plate case we have selected Site 1309D and some from the recently drilled (IODP Expedition 399, Atlantis Massif, Mid-Atlantic Ridge 30N) Site 1601C as the deepest in situ gabbo-peridotite drill cores ever recovered from the ocean floor. The downcore variation in fluid mobile elements and the vast Sr and light element isotope fractionations highlight the important role of seawater infiltration and seawater-crust interactions taking place at depth. However, it appears that the role of seawater is gradually diminishing with depth, where rather unaltered lithologies may still be involved in active metamorphic (hydration) reactions. For the convergent plate margin serpentinization we have selected to present the fascinating case of the Mariana serpentinite mud “volcanism” in the W. Pacific. Several key cores were recovered during ODP Legs 125 and 195, as well as during the IODP Expedition 366. The rocks and fluids at these forearc sites also show very large downcore elemental and isotope fractionations. In contrast to the oceanic intraplate sites, these are associated with fluids produced by metamorphic dehydration reactions occurring at blueschist and amphibolite facies conditions as a consequence of subduction of old and cold Pacific slabs. We will attempt to contrast the different tectonic settings and speculate on the importance of variously hydrated ocean crust as a volumetrically important carrier of volatiles from the surface to the deep mantle and back. Serpentinites may be important to kick-start subduction initiation.

How to cite: Savov, I., Agostini, S., DeHoog, C., Osborne, W., McCaig, A., Rost, D., Ryan, J., Price, R., Foustoukos, D., Liu, H., and Ocean Discovery Program Expedition 399 Sci. Party, I.: Storage and fate of volatiles in the shallow mantle: Insights from fluid mobile elements and light element (B, Li) isotopes in serpentinites, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20470, https://doi.org/10.5194/egusphere-egu24-20470, 2024.

14:50–15:00
|
EGU24-8282
|
ECS
|
Highlight
|
On-site presentation
Sonia Yeung, Gordon Lister, Wim Spakman, Oğuz Göğüş, Marnie Forster, Adam Simmons, and Hielke Jelsma

Forensic analysis of the geological architecture in the aftermath of destructive earthquakes is an essential step to identify controlling structures that need to be monitored. Here we suggest the sequence of events during the February 2023 Turkey–Syria earthquakes was driven by the roll back of a twisted ribbon of subducted lithosphere beneath southeast Anatolia. We assume that the February 2023 Turkey–Syria earthquakes were short-term manifestations of a longer-term tectonic process. To investigate, we built a three-dimensional (3D) mesh frame defining the geometry of subducted Tethyan lithosphere in the Eastern Mediterranean, using the UU-P07 global tomography model, and where appropriate, earthquake hypocentre sets from the Global Centroid Moment Tensor project (GCMT) and from the International Seismic Centre (ISC). The 3D model of the subducted Tethyan lithosphere exhibits three variably twisted ribbons. The Cyprus ribbon is subducted to ~280 km depth and is ~120 km wide, and it twists and curls parallel to its length by ~20 degrees anticlockwise.

The geometry prior to subduction can be estimated by floating the mesh back to the surface using the Pplates program. The process of subduction can be visualised by incorporating the floated mesh into a 2D+time tectonic reconstruction from 125 Ma to the present. This leads to the inference that the ribbons are associated with slab tearing during roll back of the Tethyan lithosphere, due to the accretion of the Lycian block and the Cyprus promontory. The twisting motions can be related to a lateral push sideways caused by anticlockwise vertical axis rotation of the Arabia indenter during opening of the Red Sea rift and the Gulf of Aden. We suggest that the Anatolian lithosphere is being stretched by ongoing differential roll back caused by drag of the Cyprus ribbon through the asthenosphere underlying southeast Anatolia. This motion continually triggers failure along strike-slip faults while facilitating the continued indentation of Arabia. Seismotectonic analysis of aftershock sequences highlights the underlying geodynamics.

How to cite: Yeung, S., Lister, G., Spakman, W., Göğüş, O., Forster, M., Simmons, A., and Jelsma, H.: A twisted ribbon of subducted lithosphere beneath southeast Anatolia and its seismotectonic implications, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8282, https://doi.org/10.5194/egusphere-egu24-8282, 2024.

15:00–15:10
|
EGU24-10304
|
On-site presentation
Hana Čížková, Jakub Pokorný, Craig Bina, and Arie van den Berg

Most earthquakes are associated with subduction zones. While earthquakes occur on very short time scales, they reflect thermal conditions and stress state attained in the subducted slab during its long term evolution. The source models of deep earthquakes thus might provide unique information about stress distribution in subduction zones which could be used to constrain geodynamic models.  

In the Tonga region, ordinary deep (620-680 km) earthquakes exhibit down-dip compressional stresses as expected, but unusually deep (≥680 km) earthquakes have unique focal mechanisms with vertical tension and horizontal compression. Here we employ geodynamic slab models to investigate the effects of the phase transitions and rheology on the stress and thermal state in Tonga slab in the transition zone and shallow lower mantle and we discuss its relation to deep earthquakes. We show that the direct buoyancy effects of the endothermic transition at 660 km depth are overprinted by bending-related forces and resistance from the more viscous lower mantle transmitted by a strong slab up-dip. The stress pattern that best fits seismogenic stresses is found for the cold plate (150 Myr old) and a viscosity increase at 1000 km depth. An abrupt change in stress orientations occurs as the slab temporarily deflected by the endothermic phase transition penetrates the shallow lower mantle while the fold in the flat-lying part tightens.

How to cite: Čížková, H., Pokorný, J., Bina, C., and van den Berg, A.: Dynamics of subducting slabs and origin of deep-focus earthquakes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10304, https://doi.org/10.5194/egusphere-egu24-10304, 2024.

15:10–15:20
|
EGU24-7864
|
On-site presentation
Fanny Garel, Nestor Cerpa, Hana Čížková, Xavier Vergeron, Diane Arcay, Serge Lallemand, and Cécilia Cadio

The thermal structure of slabs is thought to be a key parameter for deep-focus earthquakes in subduction zones, since most proposed mechanisms, such as transformational faulting, dehydration reactions or shear instabilities, are controlled by temperature. However, the classical (shallow) thermal parameter "phi", associated to the downward advection of isotherms and approximated as slab age x sinking velocity (Kirby et al., 1996), does not explain deep-focus seismicity occurring in relativelty “hot” subduction zones, e.g. under Bolivia.

 

On the other hand, the various morphologies if subducting slabs imaged by seismic tomography reveal reveal the diversity of slab deformation histories in the transition zone as they reach the high-viscosity lower mantle, e.g. folding, deflection, vertical piling.

 

Using numerical models of subduction dynamics, we propose here to characterize the spatio-temporal evolution of deep thermal structures of subducted slabs throughout various subduction scenarios. We investigate how the maximum depth reached by a given isotherm vary through time (up to 200 km for a given subduction zone). In particular, we evidence the key control of the history of slab-folding in the transition zone (folding amplitude and frequency), associated to e.g. slab viscosity and buoyancy.

 

Hence the past dynamics of subduction zones, in addition to present-day subduction parameters, has to be taken into account to predict slabs thermal structures.

 

This work is part of ANR project RheoBreak (ANR-21-CE49-0009).

How to cite: Garel, F., Cerpa, N., Čížková, H., Vergeron, X., Arcay, D., Lallemand, S., and Cadio, C.: Folding of subducting slabs controls their deep thermal structures in the mantle transition zone , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7864, https://doi.org/10.5194/egusphere-egu24-7864, 2024.

15:20–15:30
|
EGU24-10800
|
ECS
|
On-site presentation
Xavier Vergeron, Cécilia Cadio, and Fanny Garel

At subduction zones, cold lithospheric plates dive deep into the hotter Earth’s mantle. Earthquakes can occur at depths of hundreds of kilometers in these cold subducted slabs, apparently related to their thermal structures. Seismic tomography provides a first-order information on slab morphology but cannot discriminate « cold » from « warm » slabs partly due to the inhomogeneous repartition of seismic sources and surface sensors. This study investigates the potential of the gravity data from the GOCE mission to infer deep slabs’ inner thermal structures (> 200 km depth). Thermal structures of slabs with various morphologies are derived from dynamic subduction zones models. We convert temperature field into density assuming mineralogical phases at thermodynamical equilibrium for pyrolite mantle using HeFESTo model (Stixrude and Lithgow-Bertelloni 2011). We then use the freeware DynG3 (Cadio et al. 2011) to predict surface and CMB deflections due to slab dynamic sinking – depending on the radial mantle viscosity – and calculate the corresponding synthetic signals (geoid, gravity disturbance, gravity gradients). Our parametric study considers various radial mantle viscosity profiles, slab morphologies and slabs inner thermal structures (SITS). As expected, geoid and gravity gradients are sensitive to density anomalies at different depth ranges. We highlight linear relationships between both these signal for a given viscosity profile and a given slab’s morphology :

  • First, the colder an isothermal slab, the higher the geoid and gravity gradients anomalies.

  • Second, for a given shallow temperature, the colder the deep slab (>500 km), the lower the gravity gradient anomaly and the higher the geoid anomaly.

This last, counter-intuitive, result is explained by the fact that the long wavelength component associated to deep density anomaly overprints, for colder slabs, the short wavelength component associated to surface deflection. Thus, for a known viscosity profile and slab morphology, both shallow (~ 200-500 km depth) and mean slab thermal structures could be inverted from the combination of geoid and gravity gradients anomalies.

How to cite: Vergeron, X., Cadio, C., and Garel, F.: Gravimetric signature of subducted slabs’ deep thermal structures., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10800, https://doi.org/10.5194/egusphere-egu24-10800, 2024.

15:30–15:45
Coffee break
Chairpersons: Ágnes Király, Oğuz H Göğüş, Jeroen van Hunen
16:15–16:25
|
EGU24-11199
|
On-site presentation
Alex Clarke, Paola Vannucchi, and Jason Morgan

Subduction zone plate boundary shear zones are often heterogenous, polyrheological units with a block-in-matrix structure analogous to exhumed mélanges. Field study of these units reveal extreme variability in block and matrix lithologies, geometries, and internal structures. Subduction zone plate interfaces are host to a wide range of slip magnitudes and velocities, including some of the largest earthquakes on our planet.

Previous studies on the mechanical behaviour of these mélange units in shear zones have shown that the material properties of the blocks and matrix, as well as the proportions of each, strongly influence the rheological behaviour of the zone. Analysis of the Osa Mélange in SW Costa Rica has also shown that blocks may be weakened by alteration and brecciation, and/or the matrix strengthened by diagenesis/metamorphism, such that the blocks become weaker than their surrounding matrix at shallow depths of subduction. Rheological inversion may also occur at greater depths by processes such as heterogenous dehydration of serpentinite. Such an inversion of the typically-envisaged rheological relationship can have a profound influence on the distribution of stresses, location of ruptures, and the resultant slip behaviour. 

Using COMSOL Metaphysics, we conducted a systematic series of finite element numerical experiments of simple-shear in models consisting of one or multiple inclusions. The geometry, arrangement, number, and material properties of these inclusions were varied systematically — as was the material properties of the surrounding matrix — and the magnitude and location of von Mises stress minima and maxima were recorded. These experiments assessed varying the Young’s Modulus of blocks and matrix from Eblock > Ematrix to Ematrix > Eblock in comparison to varying block proportion, block aspect ratio, block angularity, block rotation angle, and the difference in Poisson’s ratio between the blocks and the matrix. 

Our data shows that the difference in Young’s Modulus between the blocks and the matrix has a greater influence on the magnitude and structure of the stress field than any other studied factor and that weak blocks in a strong matrix lead to significantly greater accumulated stresses in all geometrical configurations. Whether the blocks or matrix are expected to yield first will depend on the interplay between the difference in strength and the difference in Young’s Modulus of the two materials. In the inverted rheological relationship, failure in one block leads to greater increases in the stresses in neighbouring blocks than in the normal rheological relationship.

Clustered failure of blocks in a subduction channel has been proposed as a causal mechanism for non-volcanic tremor, with the accompanying accelerated strain being analogous to slow slip events. Rheological inversion markedly increases the likelihood that blocks fail before the matrix and that failure of one block triggers a cascade of similar failure events. This study demonstrates the significance of rheological inversion to considerations of the mechanics of subduction zone plate boundary shear zones.

How to cite: Clarke, A., Vannucchi, P., and Morgan, J.: Weak Blocks in a Strong Matrix: Exploring parameter-spaces for the biggest controls on subduction interface mechanics , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11199, https://doi.org/10.5194/egusphere-egu24-11199, 2024.

16:25–16:35
|
EGU24-14479
|
On-site presentation
Yukitoshi Fukahata and Yutaro Mori

Elastic/viscoelastic dislocation theory is a fundamental tool in computing crustal deformation due to fault motion, not only for instantaneous coseismic deformation but also for gradual postseismic and interseismic deformation. Expressing the kinematic interaction between the subducting and overriding plates by dislocation along the plate interface, our group has developed a crustal deformation model due to plate subduction, named "dislocation model for plate subduction" (Matsu'ura & Sato 1989, GJI), which is a generalization of Savage's back slip model (Savage, 1983, JGR), including the effect of deformation due to steady plate subduction. Hashimoto et al. (2004, PAGEOPH) demonstrated that the pattern of uplift rates in and around Japan computed by this model shows excellent coincidence to the observed free-air gravity anomalies. Fukahata and Matsu‘ura (2016, GJI), using the 2D model, explained the physical mechanism of island-arc uplift, trench subsidence, and outer rise uplift by combining the effects of lithospheric rotation and gravity.

   In this study, we develop a 3D numerical model and compute vertical displacement rates in a subduction zone caused by steady slip along a plate interface, in which the trench axis has a bend convex toward the island arc. Computation results show that the island arc lithosphere significantly subsides around the bend, and that the subsidence is larger for a larger bend angle.

   This subsidence can be physically understood by mass deficit in the island arc lithosphere, as explained below. When a plate subducts along a trench with a bend convex toward the island arc, mass excess inevitably occurs in the subducting slab, which can be understood from an analogy of a tablecloth draped at a corner of a table. In the dislocation model, the motion of plate subduction is expressed by displacement discontinuity along the plate interface. The displacement discontinuity, which is equivalent to a force system of a double couple, requires two surfaces that sandwich a fault to move in exactly opposite directions each other, which results in mass deficit in the island arc, because mass excess occurs in the subducting slab.

   Along the main Japanese islands, we observe significant invasions of negative free-air gravity anomalies into the forearc around the Hidaka Trough, the Kanto Plain, and the Bungo Channel, which correspond to the junctions of the trench axes. In brief, these forearc negative free-air gravity anomalies can commonly be understood by the above mechanism. We also observe similar invasions of negative free-air gravity anomalies around the Arica bend, South America, and Cascadia, though the signals of negative gravity anomalies are smaller in these regions, reflecting gentler changes of the strikes of the trench axes.

How to cite: Fukahata, Y. and Mori, Y.: 3-D Numerical Simulation of Island Arc Deformation based on the Dislocation Model for Plate Subduction and its Insight into Topographic Evolution of Island Arcs, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14479, https://doi.org/10.5194/egusphere-egu24-14479, 2024.

16:35–16:45
|
EGU24-14820
|
On-site presentation
Wouter P. Schellart

Many subduction zones on Earth experience active overriding plate deformation. Most experience extension, resulting in the formation of a backarc basin (e.g. East Scotia Sea, North Fiji Basin, Aegean Sea), while some experience shortening, resulting in a massive cordilleran mountain range (e.g. Andes). It is unclear why some overriding plates experience shortening and others extension, and why extension occurs more frequently than shortening. Numerical geodynamic simulations of subduction are presented investigating the control of slab width and subduction depth on overriding plate deformation. The numerical models demonstrate that shortening only occurs at very wide subduction zones that have subducted into the lower mantle, while overriding plate extension occurs more frequently, taking place both for narrow and intermediate size subduction zones throughout their evolution, and for wide subduction zones in the early (upper mantle) stage of their evolution as well as near their lateral slab edges during the middle stage of their evolution. The model results are compared with a global dataset of all active subduction zones on Earth (about 51,600 km of subduction zones), providing an explanation for the present-day deformation style at these subduction zones. In particular, the comparison between models and the global dataset provides an explanation for the more frequent occurrence of extension in the overriding plate compared to shortening.

How to cite: Schellart, W. P.: Subduction dynamics and overriding plate deformation, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14820, https://doi.org/10.5194/egusphere-egu24-14820, 2024.

16:45–16:55
|
EGU24-5274
|
ECS
|
On-site presentation
Christian Schuler, Boris Kaus, Eline Le Breton, and Nicolas Riel

The geodynamic evolution of the Alpine-Mediterranean area is complex and still subject to ongoing debate. The Adriatic microplate motion is of particular interest as it is influenced by three distinct subduction systems: the Alpine subduction in the north, the Dinaric-Hellenic subduction in the east, and the Calabrian-Apenninic subduction in the west. Additionally the system is influenced by the northward movement of the African continent, which further contributes to the geodynamic complexity of the region.

In this study, 3D thermomechanical simulations of the Alpine-Mediterranean region are performed using the code LaMEM (Kaus et al., 2016). The simulations employ a viscoelastoplastic rheology and an internal free surface to investigate the internal dynamics of the mantle. The initial plate configuration for the simulations is based on the kinematic reconstructions of Le Breton et al. (2021) at 35 Ma. The objective is to identify the controlling factors that drive the motion of the Adriatic microplate. This is achieved by investigating the role of various model parameters, such as the thermal structure of the lithosphere, the geometry and strength of the continental margin, the mantle viscosity, brittle parameters of the crust and the location of crustal heterogeneities.

Results show that Adria undergoes two distinct phases of plate motion over the past 35 million years. Between 35 Ma and 20 Ma, the African plate moves northward, pushing Adria in the same direction. However, once the Hellenic slab rolls back from the east and the Calabrian and Apenninic slabs roll back from the west, the Adriatic microplate decouples from the African plate, resulting in an anticlockwise rotation of Adria. Overall, this study provides valuable insights into the parameters that affect subduction dynamics in the Mediterranean and the independent motion of the Adriatic microplate.

Kaus, B. J. P., A. A. Popov, T. S. Baumann, A. E. Pusok, A. Bauville, N. Fernandez, and M. Collignon, 2016: Forward and inverse modelling of lithospheric deformation on geological timescales. Proceedings of NIC Symposium.

Le Breton, E., Brune, S., Ustaszewski, K., Zahirovic, S., Seton, M., & Müller, R. D. (2021). Kinematics and extent of the Piemont–Liguria Basin–implications for subduction processes in the Alps. Solid Earth, 12(4), 885-913.

How to cite: Schuler, C., Kaus, B., Le Breton, E., and Riel, N.: Investigating the plate motion of the Adriatic microplate by 3D thermomechanical modelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5274, https://doi.org/10.5194/egusphere-egu24-5274, 2024.

16:55–17:05
|
EGU24-6689
|
On-site presentation
Neil Ribe, Stephanie Chaillat, Gianluca Gerardi, Alexander Chamolly, and Zhonghai Li

Because Earth's tectonic plates are doubly curved shells, their mechanical behavior during subduction can differ significantly from that of flat plates. We use the boundary-element method to study free (gravity-driven) subduction in 3-D spherical geometry. The model comprises a shell with thickness h and viscosity η1 subducting in a viscous planet with radius R0. Our focus is on the magnitude of the longitudinal normal membrane stress (`hoop stress'), which has no analog in Cartesian geometry. Scaling analysis based on thin-shell theory shows that the resultant (integral across the shell) of the hoop stress obeys the scaling law Tφ ∼ (η1h W/R0) max(1, cotθ) where θ is the colatitude and W is the velocity of the shell normal to its midsurface that is associated with bending. We find that the state of stress in the slab is dominated by the hoop stress, which is 3-7 times larger than the downdip stress. Because the hoop stress is compressive, it can drive longitudinal buckling instabilities. We perform a linear stability analysis of a subducting spherical shell to determine a scaling law for the most unstable wavelength, which we compare with observed shapes of trenches in the Pacific ocean. 

How to cite: Ribe, N., Chaillat, S., Gerardi, G., Chamolly, A., and Li, Z.: Hoop Stresses in Free Subduction on a Sphere, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6689, https://doi.org/10.5194/egusphere-egu24-6689, 2024.

17:05–17:25
|
EGU24-12731
|
solicited
|
On-site presentation
Jonathan Delph, Mary Reid, Daniel Portner, Susan Beck, A. Arda Ozacar, W. Kirk Schleiffarth, Michael Darin, Donna Whitney, Michael Cosca, Christian Teyssier, Nuretdin Kaymakci, and Eric Sandvol

The geological expression of subduction termination is poorly understood due to overprinting during the collisional stage of the Wilson Cycle. The Anatolian domain of the eastern Mediterranean represents a modern system where spatial variability can be interpreted in terms of the transition from subduction to collision. Convergence in the west is accommodated by the subduction of the last remnants of Neotethyan oceanic lithosphere, while in the east, the margin has transitioned to complete continent-continent collision. In central Anatolia, however, the expression of convergence is complicated by the underthrusting of small continental fragments and attenuated continental lithosphere. By investigating variations in the geological expression of convergence across this system, we can investigate the processes that accompany the transition from subduction to collision.

Spatially variable tectonomagmatic and seismic characteristics along the Anatolian margin reflect this transition. Seismic images reveal a disjointed and disaggregating subducting slab beneath central Anatolia that interacts with, and in some cases induces, mantle flow. This spatially corresponds with Miocene-to-recent volcanism that is sourced from very shallow depths (<60 km) and has a southwestward younging pattern to the initiation of magmatism. Primitive melts in the region contain metasomatized lithospheric mantle and asthenosphere signatures resulting from the long-lived subduction history of the margin combined with recent slab rollback and mantle upwelling around the subducting slab edge based on seismic images. Superimposed on regional magmatic trends, local spatiotemporal patterns show subtle southward and westward younging and/or broadening, perhaps associated with thermomagmatic erosion of the lithosphere along relict structures and/or slab edge-induced flow. Conversely, seismic images in eastern Anatolia reveal a nearly uniform mantle flow and no discernable evidence for subduction. Interestingly, magmatic patterns in central and eastern Anatolia bifurcate in the early to mid-Miocene, interpreted as the time when a vertical slab tear developed along the once continuous Tethyan slab. These results indicate that expressions of subduction termination can be very heterogenous along the strike of a margin.

How to cite: Delph, J., Reid, M., Portner, D., Beck, S., Ozacar, A. A., Schleiffarth, W. K., Darin, M., Whitney, D., Cosca, M., Teyssier, C., Kaymakci, N., and Sandvol, E.: The Seismic Expression and Tectonomagmatic Evolution of Subduction Termination along the Anatolian Margin , EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12731, https://doi.org/10.5194/egusphere-egu24-12731, 2024.

17:25–17:35
|
EGU24-7174
|
On-site presentation
|
Stuart Clark and Peigen Lou

The dynamics of subducting lithosphere with an embedded continental fragment is complex, with rapid changes in plate kinematics, mantle flow and uplift of the overriding plate as the fragment impacts the trench. However, the sequence and timing of the effects is often difficult to constrain, leading to uncertainties in the exact causes for particular subduction zones. We conducted 2D and 3D numerical modelling of subduction with Underworld2.0 to investigate the interactions between the subducting lithosphere and an embedded continental fragment, the Eratosthenes Seamount in the Cyprus subduction zone. Due to the uncertainty in the size of the continental crust around the Eratosthenes Seamount, we varied the size of the fragment from 200 km to 400 km (trench perpendicular) and compared to 3D model with a fixed seamount. The 3D model matches the regional seismic tomography models that show the absence of lithosphere on the subducting slab ahead of the continental fragment. In all the models, the subduction zone first develops as expected as the continental fragment approaches the trench. As the fragment contacts the trench at 6.5 Ma, the first uplift in Anatolia is experienced. However, the pace of uplift increases dramatically at 450 ka as the slab tear develops and the mantle flow pattern changes. The observed uplift rate before 450 ka is 0.07 mm/yr while after 450 ka, the uplift rate increases to 3.21 – 3.42 mm/yr. The model that best matches the size of the fragment is 200 km with a rate of 0.04 mm/yr before 450 ka and 1.76 mm/yr after 450 ka. The reference uplift rate from the model without the slab break-off from 450 ka is only 0.02 mm/yr.  The models demonstrate that the slab tear and break-off caused by the impact of the Eratosthenes Seamount causes the uplift observed and in particular is responsible for the more rapid uplift rates observed since 450 ka in the Central Taurides. 

How to cite: Clark, S. and Lou, P.: The Acceleration of Uplift in the Central Taurides due to Continental Fragment Collision in the Subduction Zone of the Eastern Anatolian Region, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7174, https://doi.org/10.5194/egusphere-egu24-7174, 2024.

17:35–17:45
|
EGU24-330
|
Virtual presentation
Ebru Şengül Uluocak, Russell N. Pysklywec, Andrea Sembroni, Sascha Brune, and Claudio Faccenna

Post-subduction tectonics can involve a wide range of spatiotemporal processes associated with regional and large-scale upper mantle forces. To better understand the interaction between these forces in collisional settings, we focus on active mantle dynamics beneath the East Anatolian Plateau, a well-documented segment of the Arabian-Eurasian continental collision zone. In detail, we use state-of-the-art instantaneous thermomechanical models by combining the advantages of 3D numerical modeling with high-resolution imaging techniques. We analyze the model’s outputs, such as 3D stress-strain and temperature variations of upper mantle convection and reconcile them with numerous geological and geophysical observations. Our results show prominent northward-directed channel flow in the mantle that cuts across the plateau and surroundings, from the Arabian foreland to the Greater Caucasus domain. This result reproduces and elucidates the proposed ~SW-NE-oriented Anatolian Background Splitting pattern and recent seismic low-ultra low-velocity anomalies. We argue that this large-scale upper mantle flow constitutes the engine for the long-wavelength dynamic topography (~400 m) in the region and promotes the relatively small-scale convection pattern by supporting intraplate rift tectonics in the extensional Van Lake zone.

How to cite: Şengül Uluocak, E., Pysklywec, R. N., Sembroni, A., Brune, S., and Faccenna, C.: The Role of Upper Mantle Forces in Post-subduction Tectonics: Insights from 3D Thermo-mechanical Models in the East Anatolian Plateau, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-330, https://doi.org/10.5194/egusphere-egu24-330, 2024.

17:45–18:00

Posters on site: Thu, 18 Apr, 16:15–18:00 | Hall X2

Display time: Thu, 18 Apr 14:00–Thu, 18 Apr 18:00
Chairpersons: Ágnes Király, César R. Ranero, Jeroen van Hunen
X2.55
|
EGU24-700
|
ECS
Noémie Bosc, Delphine Bosch, Mélody Philippon, Mélanie Noury, Olivier Bruguier, Lény Montheil, Douwe van Hinsbergen, and Jean Jacques Cornée

The British Virgin Islands (BVI) is a NE-SW trending archipelago located in the northeastern corner of the Caribbean plate. Exposing volcanic arc rocks, it is located at the junction between the old arc of the Greater Antilles to the Northwest and the active arc of the Lesser Antilles to the South. The BVI are a key location to study the geodynamical evolution of the northeastern boundary of the Caribbean plate. In order to understand its significance into the overall Caribbean evolution, a set of 16 igneous samples from seven islands was studied for petrology, geochemistry (major and trace elements, and Pb-Sr-Nd-Hf isotopes), thermobarometry (Al-in-hornblende) and U-Pb geochronology on accessory minerals (zircon, titanite and apatite). The studied rocks show a typical volcanic arc signature and correspond to a calc-alkaline series, differentiated along a NE/SW gradient. Trace elements patterns show strong negative HFSE anomalies and LILE enrichments. ɛHfi are homogeneous ranging from +11.4 to +14.1 typical of a MORB-type mantle. Magmas were thus originated from a homogeneous mantle corresponding to the mantle wedge, with participation of a slab component. The slab component contribution is estimated to be less than 2% and is dominated by aqueous fluids, except for Peter and Norman Islands. U-Pb ages emphasize an active magmatic period spanning between ~43 Ma and ~30 Ma along a NE-SW younging gradient. This age range and strong geochemical similarities with arc lavas exposed in St Martin and St Barthélémy suggest that the BVI represent the northern continuity of the Eo-Oligocene extinct branch of the Lesser Antilles arc. Crystallization depth of the studied plutonic bodies, estimated by thermobarometric constraints, supports a NE-SW increasing emplacement depth from ~7km to ~13km. The oldest plutonic bodies at NE thus experienced less total exhumation than the youngest plutonic bodies at SW (maximum rate of ~2.2 mm/yr at SW and minimum rate of ~0.2 mm/yr at NE). From Eocene to Oligocene it has been recently demonstrated that the block from Puerto Rico-Virgin Islands (PRVI) rotated 45° counter clockwise (Montheil et al., 2023). Previous thermochronological data shows that the BVI exhumation occurred synchronously along the archipelago between ~25 and ~21 Ma (Román et al., 2021). Together these observations suggest a regional tilt of the BVI block that occurred between plutons crystallisation and their exhumation at ~2 km depth. We propose that the tilting and the fast exhumation of the BVI, that are synchronous with counterclockwise rotation of the PRVI block, are the consequence of subduction locking generated by the Bahamas bank accretion to the northeastern Caribbean plate.

How to cite: Bosc, N., Bosch, D., Philippon, M., Noury, M., Bruguier, O., Montheil, L., van Hinsbergen, D., and Cornée, J. J.: The British Virgin Islands in the Caribbean Evolution: Petrogeochemical and geochronological constraints, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-700, https://doi.org/10.5194/egusphere-egu24-700, 2024.

X2.56
|
EGU24-8783
Daniel Gómez Frutos and Antonio Castro

An important task in petrology is the successful identification of the parental that birthed the magmas constituting the continental crust. Among these, an intermediate parental to subduction related magmas, often referred to as Andean-type, has been determined experimentally in various works. However, identification of a natural rock matching the model compositions has not been accomplished. This difficulty arises primarily from prolonged cooling times, leading to large-scale fractionation and impeding the preservation of the parental magmas. In this regard, quenching becomes a valuable phenomenon, precluding differentiation and thereby preserving the initial compositions. This highlights the relevance of magma mingling zones, a common feature of Andean-type batholiths, as optimal places to probe for parental compositions. Following these considerations, a new set of geochemical analyses from the Gerena magma mingling zone, an Andean-type intrusion in southwest Iberia, is presented to address this problematic. Sampling focused on dark bodies, presumed to be mafic to intermediate in composition. Interestingly, combined evidence from major, trace element and Sr and Sm isotopes suggest that the smaller dark bodies have undergone precluded differentiation. Moreover, according to geochemical modelling their composition can reproduce the neighbouring granites and cumulates through differentiation. These findings emphasize the importance of magma mingling zones as valuable sources of information and shed new light in the identification of the parental composition to Andean-type magmatism.

How to cite: Gómez Frutos, D. and Castro, A.: Unveiling parental compositions in Andean-type intrusions through magma mingling zones, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8783, https://doi.org/10.5194/egusphere-egu24-8783, 2024.

X2.57
|
EGU24-4240
He Huang, Tao Wang, and Lei Guo

Convergent continental margins are the major sites for the formation, differentiation, preservation, and destruction of continental crust. This article focuses on the Mesozoic crustal modification history of northeastern China from a magmatic perspective. During Mesozoic times, NE China was influenced by three convergent systems, namely the Paleo-Asian Ocean (PAO) regime to the south, the Mongol-Okhotsk Ocean (MOO) regime to the northwest, and the Paleo-Pacific Ocean (PPO) regime to the east. This study comprehensively synthesizes information on Early Triassic to Early Cretaceous magmatic rocks. We unravel the spatiotemporal effects of the above-mentioned convergent regimes by evaluating the migration of major magmatic belts and other geological and geophysical evidence. The PAO regime is confined to the southernmost part of NE China and exerted influence during pre-late Late Triassic times. The MOO regime-related magmatism lasted until the early Early Cretaceous and occurred throughout the Great Xing’an Range and adjacent regions. The spatial effect of the PPO did not exceed the eastern margin of the Songliao Basin until the Early Jurassic; low-angle to flat subduction of the PPO slab led to the westward migration of continental arc front in the Middle Jurassic and the waning of PPO regime-related magmatism in the Late Jurassic. Since the earliest Cretaceous, the rollback and retreat of the PPO slab became the predominant geodynamic control in NE China, but the superposition of the MOO regime played a role during the early Early Cretaceous. Employing whole-rock Nd and zircon Hf isotope spatial imaging, this study elucidates that, although the pre-Mesozoic lithospheric heterogeneity provides first-order control, the Mesozoic crustal architecture of NE China was further carved by Mesozoic tectonics. Retreating subduction (slab rollback) and post-collisional lithospheric delamination resulted in the prolonged extensional background and crustal growth (rejuvenation); on the contrary, low-angle subduction and syn-collisional compression could cause transient periods of ancient crust reworking. Our results also estimate the high altitude of the Great Xing’an Range and adjacent regions in the Early Cretaceous. This study opens new possibilities to explicitly document crustal modification processes in fossil orogens from a magmatic perspective.

How to cite: Huang, H., Wang, T., and Guo, L.: Crustal modification influenced by multiple convergent systems: Insights from Mesozoic magmatism in northeastern China, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4240, https://doi.org/10.5194/egusphere-egu24-4240, 2024.

X2.58
|
EGU24-4216
|
ECS
Chaoyang Wang, Tao Wang, van Staal Cees, Zengqian Hou, and Shoufa Lin

The migration and character of magmatism over time can provide important insights into the tectonic evolution of an orogen. We present evidence for three separate episodes of compositionally distinct granitoid magmatism associated with the Acadian orogenic cycle in the eastern and southern Newfoundland Appalachians. The interpretations are based on new zircon U-Pb ages, geochemical data, and Sr-Nd-Hf-O isotopic data for 18 samples from 15 Silurian and Devonian granitoid plutons, combined with previously published data. The three episodes outline hinterland and foreland-directed migration trends and represent subduction (435-420 Ma), syn-collision (415-405 Ma), and post-collision (395-370 Ma) settings in the Acadian orogenic cycle. The Silurian plutons (435-420 Ma) consist mainly of quartz diorite, tonalite, granodiorite, monzogranite, and syenogranite, with high-K calc-alkaline and enriched Sr-Nd-Hf-O isotopic compositions (e.g., εNd[t] = -5 to -2; εHf[t] = -3 to -1; δ18O = +6 to +8). They are interpreted to record the subduction of oceanic lithosphere of the Acadian seaway that separated the leading edge of composite Laurentia represented by the Gander margin and Avalonia. The Early Devonian plutons (415-405 Ma), containing more voluminous monzogranite and syenogranite, have calc-alkaline to high-K calc-alkaline features, adakite-like compositions, and more-depleted Sr-Nd-Hf-O isotopic compositions (e.g., εNd[t] = -6 to 0; εHf[t] = +1 to +3; δ18O = +5 to +6). This stage occurs mostly to the northwest of the Silurian, indicating a regional scale northwestward (hinterland-directed) migration of magmatism with a rate of > 9 km/Ma. The migration is interpreted to be related to the progressive shallow underthrusting of Avalonia beneath the Gander margin (composite Laurentia) at least as far as 90 km inboard. The Middle to Late Devonian plutons (395-370 Ma) consists mainly of monzogranite, syenogranite, and alkali-feldspar granite, which are silica- and alkali-rich with large negative Eu anomalies. These rocks are concentrated along both sides of the Dover - Hermitage Bay fault zone, which represents the boundary between Avalonia and composite Laurentia, to the southeast of the Silurian-Early Devonian igneous rocks. This stage of magmatism represents a foreland-directed (retreating) migration. The Early Devonian and Middle to Late Devonian magmatism were separated by a gap between 405 and 395 Ma, and recorded an evolution from (high-K) calc-alkaline to alkaline compositions, which is ascribed to partial delamination of Avalonian lithospheric mantle in a post-collisional setting.

How to cite: Wang, C., Wang, T., Cees, V. S., Hou, Z., and Lin, S.: Evolution of Silurian to Devonian magmatism associated with the Acadian orogenic cycle in Newfoundland Appalachians: Evidence for a three-stage evolution characterized by episodic hinterland- and foreland-directed migration of granitoid magmatism, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4216, https://doi.org/10.5194/egusphere-egu24-4216, 2024.

X2.59
|
EGU24-568
|
ECS
Nikola Stanković, Taras Gerya, Vladica Cvetković, and Vesna Cvetkov

Oceanic obduction and ophiolite emplacement are processes which result in positioning of more dense oceanic lithosphere on top of less dense continental crust. It is known that obduction is related to the closure of oceanic realms, however exact mechanisms that lead to the obduction of these ophiolite rocks, and more importantly, their permanent emplacement onto the continental crust is still controversial.

Although many mechanisms for ophiolite emplacement have been proposed, there have been substantial difficulties in modelling the ophiolite emplacement by means of numerical simulations. Creating physically viable simulations of the ophiolite emplacement is of paramount importance for better understanding of the process itself. There have been some notable successful attempts. For example, [1] succeeded in emplacing ophiolites by artificially reversing the velocity conditions once the ophiolite block is already obducted. More recently, [2] have shown that continental extrusion mechanism, which is a result of the activation of subducted continental crust at higher P-T conditions, can account for the emplacement of far-travelled ophiolites.

In this communication, we report interim results of our attempt to explain spontaneous emplacement of large ophiolite blocks by means of trans-lithospheric diapirism of continental crust. This phenomenon has recently been modelled [3] in the context of continental collision and the formation of the European Variscides. However, in this study, we produce a spontaneously induced intra-oceanic subduction. This model involves a retreating subduction with trench reaching the passive continental margin, leading to the continental subduction under very young oceanic lithosphere. Consequently, subducted crust is activated in deeper regions and forms a diapiric upward flow. This trans-lithospheric diapirism reaches the surface, thus separating the already obducted parts of the oceanic lithosphere from the rest of the oceanic domain, resulting in permanent ophiolite emplacement.

The presence of crustal rocks in such deep environments of ultra-high pressure certainly leads to their metamorphism. In the scope of our simulations we are monitoring the P-T paths of relevant crustal markers and propose rough estimates of the P-T conditions of metamorphic peak. For the calculations of the numerical simulations we utilize marker-in-cell method with conservative finite differences [4].

 

[1] T. Duretz, P. Agard, P. Yamato, C. Ducassou, E. B. Burov, and T. V. Gerya, “Thermo-mechanical modeling of the obduction process based on the oman ophiolite case,” Gondwana Research, vol. 32, pp. 1-10, 2016.

[2] K. Porkoláb, T. Duretz, P. Yamato, A. Auzemery, and E. Willingshofer, “Extrusion of subducted crust explains the emplacement of far-travelled ophiolites,” Nature Communications, vol. 12, no. 1, p. 1499, 2021.

[3] P. Maierová, K. Schulmann, P. ’Štípská, T. Gerya, and O. Lexa, “Trans-lithospheric diapirism explains the presence of ultra-high pressure rocks in the european variscides,” Communications Earth & Environment, vol. 2, no. 1, p. 56, 2021.

[4] T. V. Gerya and D. A. Yuen, “Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties,” Physics of the Earth and Planetary Interiors, vol. 140, no. 4, pp. 293-318, 2003.

How to cite: Stanković, N., Gerya, T., Cvetković, V., and Cvetkov, V.: Trans-Lithospheric Diapirism as a Possible Mechanism for Ophiolite Emplacement?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-568, https://doi.org/10.5194/egusphere-egu24-568, 2024.

X2.60
|
EGU24-16152
Serge Lallemand, Michel Peyret, Diane Arcay, Nestor Cerpa, and Arnauld Heuret

The nature and amount of sediments transferred from one plate to the other near the subduction interface partly determine the tectonic and seismogenic regime of a margin. Examination of over 500 multichannel seismic lines has enabled us to build a global database of subduction zone front characteristics at unprecedented spatial resolution. The total thickness of sediments in the trench below the deformation front, as well as that of the subduction channel at a distance from the trench, combined with other indices, such as the tectonic regime of the forearc or the migration of the volcanic front, are used to revisit the accretionary or erosional character of active margins.

The integration of our observations over the last million years has been achieved in parallel with a revision of the kinematics of subduction zones, taking into account deformation at the front of the thrust plate. Indeed, subduction zones are often the site of distributed or localized deformation up  to several hundred kilometers away from the plate boundary. Taking the "arc sliver zone » deformation into account yields a more accurate estimate of the effective long-term slip velocities (modulus, azimuth) on the subduction interface, which is fundamental to properly estimate material flow transiting towards the mantle.

Preliminary conclusions, based on ∼3/4 of sufficiently documented subduction zones, show a predominance of the erosive character of subduction over the last million years. The flux of solid sedimentary matter through the shallow part of the subduction channel is approximately 1.5 km3/yr, and that of pore fluids 0.4 km3/yr. Some subduction zones, such as the Aegean-Cyprean one, are characterized by exceptional solid flux in the channel, whereas the fluid flux is comparatively moderate. This is because channel sediments are compacted even before being subducted. Indeed, porosity has a major influence in estimating these fluxes, maximum porosity in the channel being reached when there is neither accretion nor tectonic erosion. Overall, fluid flux in the channel is greater under erosive margins, due both to the higher rate of subduction and often higher porosity. The data are displayed over 260 transects across subduction zones thanks to the Submap web-tool (www.submap.fr).

How to cite: Lallemand, S., Peyret, M., Arcay, D., Cerpa, N., and Heuret, A.: Balance of solid and fluid transfers near the updip limit of the seismogenic zone at the scale of all subduction zones in a revised kinematic framework, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16152, https://doi.org/10.5194/egusphere-egu24-16152, 2024.

X2.61
|
EGU24-14322
|
ECS
Peter Lindquist, Cailey Condit, William Hoover, and Victor Guevara

Dehydration reactions in the subducting slab have been suggested as a fluid source for high pore fluid pressures that are inferred in the environment that hosts deep slow slip and tremor in subduction zones. Using petrography, major and trace element geochemistry, and petrologic modeling, we study the record of dehydration reactions in exhumed metabasalt from the Catalina Schist in southern California, USA to explore potential sources of the fluids that produce high pore fluid pressures at the plate interface. The Catalina Schist comprises tectonic slices that were underplated in a subduction zone at lawsonite blueschist to amphibolite facies conditions. Metabasalts from the epidote-amphibolite facies unit here represent a coherent section of oceanic crust that was underplated during subduction at ~550°C and ~1 GPa, and are  ~100 m structurally below an ultramafic-metasedimentary mélange unit interpreted to be a paleosubduction interface from ~35 km paleodepth. Previous thermodynamic modelling suggests that epidote minerals may be common reaction products during prograde dehydration reactions along typical warm subduction geotherms, particularly at the conditions of slow slip and tremor. We therefore focus on epidote textures and trace-element compositions to provide insights into the metamorphic reactions experienced by these metabasalts, and by extension reconstruct the dehydration history of this subducted slab. Pairing these analyses with phase equilibrium modeling, we estimate the P-T path experienced by these metabasalts and the conditions at which epidote may be growing or reacting out. Epidote textures vary significantly across outcrops and appear in various settings including: epidote-rich veins and vein-like dehydration networks, and porphyroblastic epidote in surrounding host rocks. Oscillatory zoning in synkinematic epidote porphyroblasts further suggests episodic growth under varying conditions or fluid compositions. Variations in the major element and trace element geochemistry of epidote across these domains, coupled with petrologic modeling helps to reveal the metamorphic reactions that occurred in these rocks, and allows us to begin quantifying the volumes of fluids that may be released during prograde metamorphism near the conditions of deep slow slip and tremor.

How to cite: Lindquist, P., Condit, C., Hoover, W., and Guevara, V.: The metamorphic dehydration of subducted metabasalts in the Catalina Schist: Does epidote record fluid production at the depths of deep slow slip and tremor?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14322, https://doi.org/10.5194/egusphere-egu24-14322, 2024.

X2.62
|
EGU24-19448
|
ECS
Yuhan Li, Ingo Grevemeyer, Adam Robinson, Timothy J. Henstock, Milena Marjanović, Anke Dannowski, Helene-Sophie Hilbert, and Damon A.H. Teagle

At subduction zones, the bending of incoming plates and associated extensional stresses resulted in strong fault activity in the crust and upper mantle. The severe fracturing of the subducting slab in the trench outer rise facilitates the entrain of seawater into the lithosphere, leading to the serpentinization of peridotite in the upper mantle. Therefore, subduction zones are an important setting, nurturing material exchange between the hydrosphere and the solid earth, affecting the water cycle.

To investigate the behavior of the subducting plate, during the experiment conducted aboard RRS JAMES COOK in the Guatemala Basin where the Cocos plate enters the Middle America Trench, we collected a wide-angle seismic refraction profile and coincident multi-channel seismic profile. Here, we present a seismic velocity model derived from a joint refraction and reflection seismic tomography using 10,508 crustal refraction arrivals, 6,533 Moho reflection arrivals, and 7,769 upper mantle refraction arrivals recorded by 37 ocean-bottom-seismometers. The spacing of instruments is ~7.5 km on the unaltered incoming plate and decreases to half of that from the outer rise into the trench. The results show that the unaltered oceanic crust is ~5-6 km thick and features a typical two-layer oceanic structure, ranging from ~4-5 km/s at the basement top to ~7 km/s at the bottom of the crust. Closer to the trench, at ~70 km away, we observe a prominent velocity reduction with lower-crustal velocities dropping to <6.8 km/s, indicating a strong impact of bend-faulting and/or hydration of the crust. However, the onset of normal faulting is observed in the coincident seismic reflection profile at ~100 km away from the trench axis. The observed faulting may indicate an evolutionary process with the progressive development of bending-related faults. At the outer rise, a seamount rising ~1 km above the seafloor is characterized by extremely low crustal velocities of only <6.5 km/s at the bottom of the crust, suggesting that the seamounts facilitate hydration. Further east, the lower crustal velocities are reduced to ~6.5-6.7 km/s beneath the outer trench wall. In the upper mantle, velocity reduction is observed ~100 km away from the trench axis and reaches its minimum beneath the seamount at the outer rise with ~7.2 km/s, which may indicate up to ~20% of mantle serpentinization. Based on our velocity modeling results, we conclude that the intensity of bend-related faulting, hydration, and mantle serpentinization is not only controlled by the distance from the trench axis but also by seamounts ventilating the oceanic crust.

How to cite: Li, Y., Grevemeyer, I., Robinson, A., Henstock, T. J., Marjanović, M., Dannowski, A., Hilbert, H.-S., and Teagle, D. A. H.: Bending-related faulting, hydration, and mantle serpentinization in the incoming Cocos Plate at Middle America Trench: Evidence from wide-angle seismic refraction data, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19448, https://doi.org/10.5194/egusphere-egu24-19448, 2024.

X2.63
|
EGU24-6007
Nestor Cerpa and Ikuko Wada

Fluid release from dehydration reactions and subsequent fluid migration in the subducting slab control the distribution of fluids in subduction zones, impacting many subduction processes, such as intraslab earthquakes, megathrust earthquakes, episodic slip and tremor, mantle wedge metasomatism, and arc-magma genesis.  Previous numerical models of two-phase flow indicate that compaction-pressure gradients induced by the dehydration reactions could drive updip intraslab fluid flow near the slab surface (Wilson et al., 2014). However, how the initial hydration in the incoming oceanic mantle prior to subduction impacts the updip fluid flow has not been investigated. Here, we use a 2-D two-phase flow model to investigate this effect under various initial slab-mantle hydration states and slab thermal conditions, the latter of which impact the depth extent of the stability of hydrous minerals. We especially focus on quantifying the lateral shift between the site of dehydration reactions and the location at which the fluids reach the slab surface due to their updip migration within the slab. The modeling results show that the most favourable path for updip flow is the antigorite dehydration front, the spatial extent of which depends on the slab-temperature and the thickness of the hydrated slab mantle. Our models predict that slab-derived fluids can travel over tens of km updip within the slab before reaching the slab surface. Such updip migration is more likely in warm(ish)-slabs, in which the formation of the antigorite dehydration front in the slab mantle does not require deep hydration of the incoming oceanic mantle prior to subduction.

How to cite: Cerpa, N. and Wada, I.: Role of degree and depth extent of slab-mantle hydration in controlling the intraslab fluid flow upon dehydration, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6007, https://doi.org/10.5194/egusphere-egu24-6007, 2024.

X2.64
|
EGU24-17823
Derek Neuharth, Whitney Behr, Adam Holt, and Jonas Ruh

Accretionary wedges are regions of off-scraped and underplated sediment and oceanic crustal materials formed along subduction zones. Many modeling studies investigate accretionary wedge mechanics on a crustal scale, or on a larger scale using kinematic boundary conditions. However, in fully dynamic systems subduction velocity can change through time in response to variations in large-scale subduction dynamics (e.g., as the slab travels rapidly through the upper mantle vs. slower sinking through the transition zone). How this time-dependence affects an evolving accretionary wedge and subduction interface properties, and the resulting effect on subduction speeds, is not well understood.

To understand how accretionary wedges evolve during different stages of subduction, we develop fully dynamic 2D subduction models using the finite element code ASPECT. The visco-plastic model setup consists of a dense subducting plate and a buoyant overriding plate coupled with a 6-km thick wet quartzite sediment interface. A fluid pressure ratio profile is prescribed within the sediment that varies from 0.4 at the surface to 0.9 at depths greater than 4-km. Between 50 to 100 km depth, the fluid pressure ratio is linearly tapered from 0.9 to 0. We run models for 30 Myr where we vary 1) the initial sediment thickness, 2) frictional strength, and 3) the depth needed to reach the maximum fluid pressure ratio. We explore how these parameters affect the thickness of the accretionary wedge, the amount of sediment that enters the subduction channel, and the resulting subduction speed.

Preliminary results suggest that an accretionary wedge will initially frontally accrete as the wedge thickens. Over time, the faults forming these slivers are rotated towards vertical and moved towards the subduction zone along a basal decollement. Eventually, a second decollement forms along the overriding plate interface and links to the first decollement through backthrust faulting, creating a series of accretionary wedge blocks that are underthrust into the subduction interface. Increasing the depth to the maximum fluid pressure ratio leads to a larger accretionary wedge, and a deeper basal decollement. A deeper decollement results in greater sediment underplating due to the backthrust faulting, resulting in more sediment within the subduction interface.

How to cite: Neuharth, D., Behr, W., Holt, A., and Ruh, J.: Influence of the fluid pressure ratio on accretionary wedge evolution over long timescales, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17823, https://doi.org/10.5194/egusphere-egu24-17823, 2024.

X2.65
|
EGU24-14498
|
ECS
Kevin Wong, Alberto Vitale Brovarone, Simon Matthews, Guillaume Siron, Valeria Turino, Adam Holt, and Andrew Merdith

At subduction zones, geophysical and petrological observations suggest that forearc mantle wedges may be serpentinised by fluids released from the devolatilization of subducting slabs [1]. This pervasive serpentinisation of the wedge may be a substantial source of abiotic hydrogen (H2) and methane (CH4): gases with the potential to feed extremophile microorganisms in the deepest parts of the continental lithosphere that overlie the wedge. Characterisation of mantle wedge serpentinisation is therefore paramount to constraining the limits within which this deep biosphere can exist. However, the geochemical and geodynamical controls on wedge serpentinisation remain a subject of immense uncertainty. The magnitude of H2 and CH4 concentrations and fluxes generated from wedge serpentinisation are therefore poorly constrained at present.

Owing to the inaccessibility of the mantle wedge, constraints on H2 and CH4 generation within the mantle wedge must be predicted through geochemical models. In this contribution we present the preliminary results of an ongoing modelling study into mantle wedge serpentinisation. Our approach utilises the Deep Earth Water model [2] to calculate fluid-rock reactions at relayed pressure-temperature conditions in the wedge, which are dictated by geodynamical models of subduction zone thermal structure [3]. The resultant fluids of prior reactions are used as reactant fluids for subsequent reactions at new pressures and temperatures; a chain of individual reactions therefore simulates the whole-scale serpentinisation of a column of mantle rock by slab fluid as the fluid migrates upwards through the wedge. By recording the composition of the overall mantle column at each pressure-temperature step, the introduction of new fluid to the resultant column provides a time element, which we use to track the evolution of bulk mantle mineralogy as subduction progresses.

Our preliminary results suggest that a heavily serpentinised layer forms rapidly at the slab-wedge interface, thereby strongly shielding the overlying mantle from significant alteration. Over more time steps, while bulk mantle density continues to decrease with time and increasing serpentinisation, our model suggests that new fluid does not significantly alter the mineralogical composition of the bulk mantle as observed within the first few time steps, and H2 and CH4 concentrations remain invariant throughout the column. However, the rate at which this fluid equilibration is achieved is strongly dependent on the initial conditions applied to the model. Our approach therefore provides a means to test multiple different parameters on H2 and CH4 generation at subduction zones, with scope for investigating the impact of variable fluid-rock ratio, initial mantle wedge and slab fluid compositions, and mantle wedge thermal structure.

[1] Vitale Brovarone et al., 2020. Nature Comms. 11(1), 3880.
[2] Sverjensky et al., 2014. Geochim. Cosmochim. Acta 129, 125-145.
[3] Holt and Condit, 2021. Geochem. Geophys. Geosyst. 22(6), e2020GC009476.

How to cite: Wong, K., Vitale Brovarone, A., Matthews, S., Siron, G., Turino, V., Holt, A., and Merdith, A.: Numerical modelling of dynamic fluid-rock reactions in subduction settings, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14498, https://doi.org/10.5194/egusphere-egu24-14498, 2024.

X2.66
|
EGU24-6602
Taras Gerya

The spinel phase (wadsleyite, ringwoodite) in the mantle transition zone (MTZ), can contain up to 1–2 wt% of water. However, whether these water reservoirs in the MTZ are filled is debated and, as the result, water content estimates in the MTZ range from less than 1 to up to 11 surface oceans (Ohtani, 2021 and references therein). I test water stability in the MTZ numerically by using 2D hydro-thermomechanical-chemical upper-mantle scale models with phase transitions and water diffusion and percolation in the mantle. Initial conditions correspond to a hydrated stagnant slab segment placed on top of 660 km discontinuity. Numerical model predicts that water diffusion from thermally relaxing slab triggers development of cold hydrous plumes from the slab surface, which are driven by the water-induced buoyancy (Richard and Bercovici, 2009). These plumes rise to and interact with olivine-spinel transition at 410 km. Positive Clapeyron slope of this transition causes cold plume upwellings to spread under it until their temperature rises enough to allow hydrated material to cross the transition. This crossing triggers aqueous fluid release, which rapidly rises upward in form of porosity waives. Relatively low water content and cold temperature of the wet plumes rising from stagnant slabs in the mantle transition zones may suppress hydrous melting above the 410 km discontinuity, thereby disabling the transition-zone water filter effect (Bercovici and Karato, 2002) at this boundary. Based on the results of experiments, we conclude that, due to the intrinsic positive buoyancy of hydrated mantle compared to dry rocks, mantle transition zone can only serve as a transient water reservoir. The duration of water residence mainly depends on the characteristic thermal-chemical relaxation time of subducting slabs in the mantle transition zone. Therefore, average water content in this zone should mainly depend on the average amount of water brought into it by subducting slabs globally during the characteristic relaxation time.

 

References

Bercovici, D., Karato, S., 2003. Whole-mantle convection and the transition zone water filter. Nature, 425, 39–44.

Ohtani, E., 2021. Hydration and Dehydration in Earth's Interior. Annual Review of Earth and Planetary Sciences, 49, 253-278.

Richard, G.C., Bercovici, D., 2009. Water-induced convection in the Earth’s mantle transition zone. J. Geophys. Res. 114, B01205.

How to cite: Gerya, T.: Is mantle transition zone a water reservoir? Yes, but only transient, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6602, https://doi.org/10.5194/egusphere-egu24-6602, 2024.

X2.67
|
EGU24-14482
|
ECS
Keqing Li, Jiashun Hu, Yida Li, Hao Zhou, and HaiJiang Zhang

The contradiction of high subducting plate speed (ranging from 4-9 cm/yr on Earth’s surface) and slow slab sinking rate (about 1-2 cm/yr in lower mantle) is intimately related to the subduction dichotomy of strong plates and weak slabs. The significant difference in the two rates indicates significant slab deformation in the mantle transition zone. However, the way and mechanism by which this deformation occurs have not been fully understood. Slab buckling has been frequently invoked to explain the deformation, but it is insufficient to accommodate the large difference in slab sinking rates across the mantle transition zone, even if an extremely low yield stress  100 MPa is applied.

Using 2-D numerical models that incorporate composite viscosity and grain size evolution, we propose a new mode of slab evolution, slab segmentation and stacking, to accommodate the differential slab sinking rates between the upper and lower mantle. The segmentation of slab is facilitated by the serpentinization of the normal faults at the outer rise and the grain size evolution, confirming the results of earlier studies (Gerya et al., 2020). More interestingly, we find periodic tearing and stacking of slab when it encounters the high viscosity lower mantle. Stacked slabs slowly sink in the lower mantle, while periodic slab tearing hinders stress transimission upward, allowing shallow plates to subduct at a higher rate. This model not only explains the high plate subduction rate observed at present day, but also the thickening of slab in the lower mantle. In addition, it provides a mechanism for slab to tear in the mantle transition zone, and thus may explain the enigmatic slab geometry beneath the Izu-Bonin-Mariana subduction zone.

How to cite: Li, K., Hu, J., Li, Y., Zhou, H., and Zhang, H.: An alternative mode of slab deformation in the mantle transition zone: segmentation and stacking, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14482, https://doi.org/10.5194/egusphere-egu24-14482, 2024.

X2.68
|
EGU24-3010
|
ECS
Chih-Hsin Chen, Eh Tan, Shu-Huei Hung, and Yuan-Hsi Lee

Taiwan is located at the edge of the Eurasian plate and borders the Philippine Sea plate. The Philippine Sea plate is moving northwestward at a speed of 70 to 80 mm/yr and is converging with the Eurasian plate, forming the Luzon arc and the Taiwan orogenic belt. However, in the middle section of the Taiwan orogenic belt, the Luzon arc is directly adjacent to the edge of the Eurasian continental margin, and the forearc basement is missing. This phenomenon of missing forearc basement is also widely observed in similar plate convergence zones. Previous studies have suggested that this forearc basement has subducted between the Philippine Sea plate and the Eurasian plate. In order to explore the mechanism of forearc basement subduction, we used thermal-mechanical coupled numerical simulations combined with geological data to simulate the dynamic mechanism of forearc basement subduction in the middle section of the Taiwan orogenic belt.

 

The simulation results show that when the subducting plate transitions from oceanic crust to continental crust, the continental crust has a lower density and is not easily subducted. The huge mass formed by the orogeny blocks the Philippine Sea plate from moving northwestward, causing the forearc crust to bend concavely and form a forearc basin. The basin begins to accumulate a large amount of sedimentary material. Later, the center of the basin breaks to form the Longitudinal Valley fault, the island arc to the east of the basin thrusts over the forearc basement, pushing the basin sediment to uplift rapidly, and finally the forearc basement subducts below the Philippine Sea plate.

 

This model explains the mechanism for the missing forearc basement, the timing of the formation of the Longitudinal Valley fault, and the dramatic up and down movements recorded in the sedimentary rocks of the Coastal Mountains. It also explains the spatial pattern of the surface heatflow.

How to cite: Chen, C.-H., Tan, E., Hung, S.-H., and Lee, Y.-H.: Thermo-mechanical models on the missing forearc basement in Taiwan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3010, https://doi.org/10.5194/egusphere-egu24-3010, 2024.

X2.69
|
EGU24-15924
Philipp Brandl, Christoph Beier, Leon Waßmund, Jacob Geersen, and Felix Genske

The Mussau Trench between Papua New Guinea and the Federated States of Micronesia is considered as the type locality for induced subduction initiation through transference. Despite its significant role for studying and understanding global plate tectonic cycles, little is known about its tectonic  geomorphology, lithostratigraphy, and geodynamic evolution. During research expedition SO299 DYNAMET with the German RV SONNE, the morphology and shallow structure of the Mussau Ridge was mapped along its entire length and sampled at representative locations. At the central segment, the ridge was visually mapped and stratigraphically sampled using the ROV. Here we present the first results from petrology, geochemistry and structural mapping of the ridge. Preliminary glass major and trace element data indicate a depleted MORB-like nature of the exposed crust that is in agreement with previous findings. Stratigraphically, lavas (layer 2A) and sheeted dykes (layer 2B) of the oceanic igneous crust are exposed. Whole rock trace element and radiogenic isotopes analyses are currently underway to further constrain the geochemical character of the crust and its associated mantle sources. Initial results from hydroacoustic and visual mapping indicate the presence of an active thrust system based on pristine fault scarps and large rubble piles lacking any sediment cover. However, shape and structure of the ridge vary along strike, and only the central portion holds indications for tectonic uplift. In the south and in the north, the ridge shows evidence for a strong lateral shear component. We combine the obtained results into an initial model of the tectonic evolution of the ridge and how this fits into regional plate tectonic models.

How to cite: Brandl, P., Beier, C., Waßmund, L., Geersen, J., and Genske, F.: The Mussau Ridge and Trench – news from an infant subduction zone, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15924, https://doi.org/10.5194/egusphere-egu24-15924, 2024.

X2.70
|
EGU24-8053
|
Highlight
Joao C. Duarte, Nicolas Riel, Filipe M. Rosas, Anton Popov, Christian Schuler, and Boris J.P. Kaus

Subduction initiation is a cornerstone of the Wilson cycle. It marks the turning point in an ocean’s lifetime, allowing its oceanic lithosphere to be recycled back into the mantle. However, forming new subduction zones in Atlantic-type oceans is challenging, as it commonly involves the action of an external force, such as the slab pull from a nearby subduction zone, a far-field compression or the impact of a mantle plume. Notwithstanding, the Atlantic Ocean already has two fully developed subduction zones, the Lesser Antilles and the Scotia arcs. These subduction zones have been forced from the nearby Pacific subduction zones. The Gibraltar Arc is another place where a subduction zone is invading the Atlantic. This corresponds to a direct migration of a subduction zone that developed in the dying Mediterranean basin. Nevertheless, few authors consider the Gibraltar subduction zone as still active because it has significantly slowed down in the last millions of years. Here, we present new 3D buoyancy-driven geodynamic models, using the code LaMEM, that reproduce the first-order evolution of the Western Mediterranean, show how the Gibraltar Arc may have formed and test if it is still active. The numerical simulations are validated using geological and geophysical data. The results suggest that the Gibraltar arc is still active and will propagate further into the Atlantic after a period of tectonic quiescence. The models also show how a subduction zone starting in a closing ocean (the Ligurian) can migrate on its own into a new opening ocean (the Atlantic) through a narrow oceanic corridor. Subduction invasion is likely a common mechanism for introducing new subduction zones in Atlantic-type oceans and a fundamental process in the recent geological evolution of Earth.

 

This work was funded by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) I.P./MCTES through national funds (PIDDAC) – UIDB/50019/2020 (https://doi.org/10.54499/UIDB/50019/2020), UIDP/50019/2020 (https://doi.org/10.54499/UIDP/50019/2020) and LA/P/0068/2020 (https://doi.org/10.54499/LA/P/0068/2020). JCD also acknowledges FCT a CEEC Inst. 2018, CEECINST/00032/2018/CP1523/CT0002 (https://doi.org/10.54499/CEECINST/00032/2018/CP1523/CT0002).

How to cite: Duarte, J. C., Riel, N., Rosas, F. M., Popov, A., Schuler, C., and Kaus, B. J. P.: Gibraltar subduction zone is invading the Atlantic, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8053, https://doi.org/10.5194/egusphere-egu24-8053, 2024.

X2.71
|
EGU24-8155
|
ECS
Helene-Sophie Hilbert, Anke Dannowski, Ingo Grevemeyer, Christian Berndt, Shuichi Kodaira, Gou Fujie, and Narumi Takahashi

The Mariana Trough is the youngest back-arc basin in a series of basins and arcs that developed behind the Izu-Bonin-Mariana subduction zone in the western Pacific. In addition to active seafloor spreading, the Mariana Trough also exhibits a pronounced asymmetry, with the spreading axis closer to the Mariana Arc. The formation and development of this back-arc basin and its predecessor is controlled by a complex interplay of temporal mantle heterogeneities, subduction dynamics of the Pacific Plate and large-scale tectonics since ~50 Ma. Here, we present new insights into the development of the central Mariana Trough at ~17°N from analyses of a 2-D P-wave traveltime tomography together with high-resolution bathymetric data. The refraction and wide-angle reflection data have been recorded by R/V KAIYO (JAMSTEC) on 41 ocean bottom seismometers (OBSs) along a 250 km profile in 2003. The results allow a subdivision of the Mariana Trough into different stages of back-arc basin opening and seem to imply a transition from symmetric rifting to asymmetric seafloor spreading. Fast-velocities in the lower crust in the rifting domain indicate that magma generation and crust formation was highly affected by hydrous melting from the subducting slab during this stage. This slab contribution decreases with the onset of active seafloor spreading due to a change in mantle flow and hence seems to be accompanied by a tectonic rearrangement of the eastern side of the basin.

How to cite: Hilbert, H.-S., Dannowski, A., Grevemeyer, I., Berndt, C., Kodaira, S., Fujie, G., and Takahashi, N.: Insights into Asymmetric Back-Arc Basin Formation in the Mariana Trough at 17°N from Traveltime Tomography, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8155, https://doi.org/10.5194/egusphere-egu24-8155, 2024.

X2.72
|
EGU24-20684
|
ECS
Zaili Tao and Jiyuan Yin

Subduction polarity reversal usually involves the break-off or tearing of downgoing plates (DPs) along the continent-ocean transition zone, in order to provide space for the overriding plate (OPs) to descend. Here we propose that subduction polarity reversal can also be caused by DP-OP coupling and that it can account for the early Paleozoic geological relationships in the West Kunlun Orogenic Belt (WKOB). Our synthesis of elemental and isotopic data reveals transient (~5 Myr) changes in the sources of the early Paleozoic arc magmatism in the southern Kunlun terrane. The early stage (530–487 Ma) magmatic rocks display relatively high εNd(t) (+0.3 to +8.7), εHf(t) (−3.6 to +16.0) values and intra-oceanic arc-like features. In contrast, the late-stage (485–430 Ma) magmatic rocks have predominantly negative εNd(t) (−4.5 to +0.3), εHf(t) (−8.8 to +0.9) values and higher incompatible trace elements (e.g., Th), similar to the sub-continental lithospheric mantle (SCLM) beneath the Tarim Craton. This abrupt temporal-spatial variation of arc magmatism, together with the detrital zircon evidence, indicate that subduction polarity reversal of the Proto-Tethys Ocean occurred in a period of ~10 Ma, consistent with migration of the magmatic arc. This rapid polarity reversal corresponds with the absence of ultra-high-pressure metamorphic [(U)HP] and post-collisional magmatic rocks, features normally characteristic of the slab break-off or tearing. Numerical modeling show that this polarity reversal was caused by plate coupling during arc-continent collision without slab break-off and tearing. This prevented rebound of the positively buoyant relic rocks and asthenosphere upwelling. This model successfully explains the early Paleozoic orogenesis in the WKOB and may be applied elsewhere where post-collisional magmatic and (U)HP rocks are absent.

How to cite: Tao, Z. and Yin, J.: Subduction polarity reversal facilitated by plate coupling during arc-continent collision, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20684, https://doi.org/10.5194/egusphere-egu24-20684, 2024.

X2.73
|
EGU24-1065
|
ECS
Unravelling Inter-slab Interactions in Double Subduction Systems: Insights from Dynamic Models
(withdrawn after no-show)
Gouri Sankar Mukherjee, Arnab Roy, and Nibir Mandal
X2.74
|
EGU24-12008
|
ECS
Erkan Gün, Philip Heron, Russell Pysklywec, Gültekin Topuz, and Oğuz Göğüş

The subduction process is the main driver of tectonic plate movements and can carry different-sized, thick crustal materials (i.e., continents, oceanic plateaux, seamounts, volcanic arcs) to the subduction trenches through the consumption of oceanic plates. The arrival of these allochthonous terranes to the subduction channel and their accretion to the overriding plate (fully or partly) can often halt the subduction process. Such a subduction-choking event is usually followed by slab break-off or polarity reversal if an ocean-ocean subduction setting is present. While these two types of post-subduction termination events are well-documented in the literature, their timing following a collision is often overlooked.

Here, we present an extensive compilation of scientific literature that shows slab break-off and subduction polarity reversal (flip) events following a collision can happen in a very short time interval. Evidence from contemporary and paleo-subduction zones (i.e., Ontong Java Plateau, Taiwan/Ryukyu Arc, Banda Arc, Philippine Trench, Caribbean Oceanic Plateau, Central Apennines, India-Asia collision) suggests that these major subduction dynamic changes can occur, on average, in 2.5 to 4.5 Myr. The findings of our numerical subduction models are in accordance with the literature and demonstrate that the required time for collision-induced break-off and polarity flip can be as short as ~2 Myr. Our recent numerical modeling work, focusing on allochthonous terranes (microcontinents and oceanic plateaux), explains a potential mechanism for these fast geodynamic events. The slab pull force can stretch and weaken the trench side of drifting terranes. Following arrival in the subduction channel, this weakened portion of terranes is easier to break, yielding a fast detachment of subducting slabs.

How to cite: Gün, E., Heron, P., Pysklywec, R., Topuz, G., and Göğüş, O.: On The Timing of Collision Induced Slab Break-Off and Polarity Reversal, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12008, https://doi.org/10.5194/egusphere-egu24-12008, 2024.

X2.75
|
EGU24-12869
Jonathan Delph, Michael Darin, Donna Whitney, Michael Cosca, Christian Teyssier, Tuna Eken, Nuretdin Kaymakci, Mary Reid, and Susan Beck

The North and East Anatolian Fault Zones represent plate-bounding transform faults that enable the westward tectonic escape of the Anatolian Plate away from the Arabian-Eurasian collisional zone. These fault zones are both capable of hosting large (Mw > 7) seismic events, as most recently demonstrated by the extremely damaging February 2023 Kahramanmaraş earthquake sequence. This earthquake sequence highlighted that plate boundary forces in this area are distributed over a very broad region, however what controls the location, distribution, and character of this plate-bounding strike-slip system remains enigmatic. To better understand potential contributions to deformation, we compare seismic images of the lithosphere (e.g., crustal and lithospheric mantle thickness and velocity) to deformational features and seismicity near the EAFZ, as well as further west where it joins with the Anatolia-Arabia-Africa (A3) triple junction along the southeastern margin of the Anatolian escape system. We interpret that although controls on surface deformation are commonly linked to stress in the brittle upper crust, the complex deformation and seismicity patterns in this region are likely related to variations in the location and extent of the strong lithospheric mantle of the Arabian plate, which currently underthrusts Anatolia as far north as the Sürgü-Çardak fault zone (~50 km). In addition, the Arabian lithospheric mantle extends at least as far west as at least the central Adana Basin, coincident with a zone of relatively deep (>30 km) strike-slip seismogenesis that has produced Mw > 6 earthquakes. By investigating the relationship between recent geological deformation since the inception of the East Anatolian Fault (ca. 5 Ma) and the modern record of seismic structure and seismicity, we infer that the Sürgü-Çardak fault zone and its associated near-orthogonal bend reaching into the Adana Basin will be the future southeastern boundary of the Anatolian Plate escape tectonic system.

How to cite: Delph, J., Darin, M., Whitney, D., Cosca, M., Teyssier, C., Eken, T., Kaymakci, N., Reid, M., and Beck, S.: Deep lithospheric controls on the formation and evolution of the East Anatolian Fault Zone and Anatolia-Arabia-Africa Triple Junction, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12869, https://doi.org/10.5194/egusphere-egu24-12869, 2024.

X2.76
|
EGU24-15803
|
ECS
|
Jorge Sanhueza, Attila Balázs, Taras Gerya, Gonzalo Yáñez, and W. Roger Buck

The generation of a slab window impacts the spatio-temporal evolution of subduction zones and promote complex mantle flow pattern where slabs once descended. The origin of slab windows is attributed to processes such as mid-ocean ridge subduction, slab tearing and/or break-off. The interaction between mid-ocean ridges and trenches is a common process affecting the geodynamic history of the margins around the Pacific, at least, during the Cenozoic and generated several modern slab windows. These intriguing features have notable effects on the upper mantle where temperature anomalies develop due to the asthenospheric upwelling and complex toroidal flow patterns through and around slab windows. There are profound effects on the overriding plate for the surface heat flow, geochemistry and spatial distribution of magmatic activity, seismicity and topographic relief. However, these manifestations evolve through space and time depending on the ridge axis-trench geometry, inducing the continuous slab window opening during its subduction.

In this contribution, we derived a simplified expression for the slab window angle and then conducted 3D geodynamic modeling to link slab windows dynamics with geochemical and geophysical observables. The numerical models were conducted with fixed geometries in steady-state (using finite elements), compared with time-dependent solutions (using the I3ELVIS code) and then compared with observations from modern slab windows along the eastern Pacific. The analytical solution for the plan projection of the slab window depends on three parameters: the ratio between the half-spreading rate to the velocity of the overriding plate, the subduction angle and the obliquity of the ridge axis respect to the trench.

Fast spreading or slow plate convergence promotes a wide (> 90°) slab window while slow spreading or fast convergence narrows this gap (< 90°). The slab dip and ridge obliquity have a second order control on the plan projection of the slab window but affect the existence of a steady-state solution. The implementation of this geometry into 3D steady-state models was used to generate a novel methodology to estimate mantle/melt upwelling and temperature anomalies in the upper mantle for a wide range of tectonic settings. Preliminary results on 3D time-dependent models reproduce a self-consistent opening of the slab window by only imposing spreading at the mid-ocean ridge and a subduction velocity with respect to the overriding plate. The ratio and absolute magnitude of these velocities controls the timing of the opening as well as the lateral and depth extent of the subducting plates. This timing also influences the development of upwelling and toroidal flow patterns around the slab edges. Finally, observations in modern slab windows along the eastern Pacific are consistent with the temperature and velocity field of the models. Variations in temperatures in the upper mantle are consistent with mantle shear wave speeds anomalies, while the flow field is correlated with the azimuthal anisotropy. In terms of magmatism, variables degrees of melting are consistent with the generation of tholeiitic to alkaline magmas in backarc areas.

How to cite: Sanhueza, J., Balázs, A., Gerya, T., Yáñez, G., and Buck, W. R.: Slab window geodynamics: towards an integrated understanding of upper mantle dynamics and observations, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-15803, https://doi.org/10.5194/egusphere-egu24-15803, 2024.

X2.77
|
EGU24-19667
|
ECS
Francisco Bolrão and Wouter Schellart

The forearc is the region of the overriding plate (OP) that physically interacts with the subducting plate (SP) and is expected to record critical information about subduction dynamics. A way to access such information is through its topography, which presents a wide variability across the natural prototypes. Some forearcs show a peculiar topography characterised by a forearc high next to the trench and a forearc basin in between this high and the magmatic arc (e.g. Alaska, Java, Central Chile). Previous studies have proposed that such topographic signature is a consequence of the gradient of the vertical component of the suction force along the plate interface (e.g., Hassani et al. 1997, Chen et al. 2017). 
Our study focuses on the role of several subduction parameters in shaping the topography of the forearc, namely the OP and SP thicknesses, OP viscosity, and slab dip angle. To carry out this investigation, we developed a series of buoyancy-driven and isoviscous models using analogue techniques, where we applied a stereoscopic particle image velocimetry technique to monitor the topography of the forearc.
So far, we have analysed the impact of the OP thickness, which shows a negative correlation with the magnitude of the forearc basin. Thicker OPs constrain trench retreat, which forces the SP to move trenchward,with subduction occurring mostly through down-dip slab sinking. Consequently, the suction force created at the plate interface by hinge retreat will decrease, resulting in shallower forearc basins. Moreover, the wavelength of the forearc basin is also affect, with thicker OP producing wider basins. Such observation suggests that the previously proposed mechanism that shapes the forearc topography is correlated with the subduction partitioning so that the magnitude of the forearc basin increases as the subduction is increasingly accommodated by slab retreat.

How to cite: Bolrão, F. and Schellart, W.: Dynamical evolution of forearc subsidence controlled by slab geometry, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19667, https://doi.org/10.5194/egusphere-egu24-19667, 2024.

X2.78
|
EGU24-18579
|
ECS
Pedro José Gea Jódar, Ana M. Negredo, Flor de Lis Mancilla, Jeroen van Hunen, and Magali Billen

Subduction zones are intrinsically three-dimensional and present a huge variability in observables along the trench, such as deformation style of the overriding plate, trench velocity, slab depth and mantle flow patterns. Geodynamic models commonly rely on factors such as external mantle flow and/or along-strike variations in the properties of subducting slabs to account for these variations in the trench-parallel direction, often ignoring the role of the overriding plate, which has been proven to strongly affect subduction dynamics. In this work, we investigate through self-consistent 3D subduction models how along-strike variations in the overriding plate structure can induce along-strike variations in subduction dynamics and mantle flow. Our results show that variations of the overriding plate thickness along the trench-parallel direction result in large along-strike variations of the trench retreat velocities, leading to highly arcuated trenches. This difference in trench retreat velocities along the trench induce complex mantle flow patterns, with the toroidal flow cells that surround the slab converging below the thin part of the overriding plate. Due to this complex mantle flow, regions of maximum localised extension are found within the thin portion of the overriding plate. Overall, our results contribute to a better understanding of seismic anisotropy observations at subduction zones on Earth.

How to cite: Gea Jódar, P. J., Negredo, A. M., Mancilla, F. D. L., van Hunen, J., and Billen, M.: Complex subduction and mantle dynamics induced by along-strike variations in overriding plate structure, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18579, https://doi.org/10.5194/egusphere-egu24-18579, 2024.

X2.79
|
EGU24-17659
|
ECS
Uğurcan Çetiner, Jeroen van Hunen, Andrew P. Valentine, Oğuz H. Göğüş, and Mark B. Allen

The Turkish–Iranian Plateau was formed by the collision between the Arabian and
Eurasian plates, commencing along the Bitlis-Zagros suture in the Late Eocene (~30-
35 Ma). This region, commonly partitioned into the East Anatolian Plateau and the
Iranian Plateau, is associated with significant differences in terms of lithospheric
structure despite an overall average of ~2 km. The geodynamic evolution of East
Anatolia is represented by a double subduction system, where the two branches of
Neo-Tethys were subducting beneath Eurasia, constantly accumulating accretionary
material that forms the bulk of the plateau today (i.e., East Anatolian Accretionary
Complex). Seismic evidence demonstrates that the region has unusually thin MOHO
(~35 km around Lake Van region) while the whole area is formed mostly by oceanic
(accretionary) material and is underlain by no or very thin mantle lithosphere. The
uplift of East Anatolia is attributed to slab break-off and slab peelback (delamination),
combined with crustal shortening. However, the intricate plate dynamics arising from
such a double subduction system, controlling plateau formation remains unclear.
Here, we conducted 2D numerical experiments and comparative model sets indicate
that, in a double subduction system like Eastern Anatolia, the mechanisms of slab
break-off and peelback heavily depend on the rheology of the subducting plates and
the coupling between the overlying and subducting plate along the trenches. In cases
of strong coupling between subducting and overlying plates, we observed an
amalgamation of the two subducting plates as they converge, potentially resulting in
a break-off as a single blob, depending on plate rheology. Conversely, in models with
weaker coupling along the trenches, peelback along the northern slab creates a thin
lithosphere along the accretionary prism, such as in the evolution of the Eastern
Anatolian Plateau. Our results highlight the important interaction between the
subduction systems where rheological constraints of the lithosphere, among other
model parameters, exert a first-order control for plateau formation.

How to cite: Çetiner, U., van Hunen, J., Valentine, A. P., Göğüş, O. H., and Allen, M. B.: Dynamics of Plateau Growth: Geodynamic Modeling of the East AnatolianPlateau Uplift Through Double Subduction Processes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17659, https://doi.org/10.5194/egusphere-egu24-17659, 2024.

X2.80
|
EGU24-18222
|
ECS
Alexia Secrétan, Sarah Degen, Luca Pacchiega, Jörg Hermann, and Othmar Müntener

The estimates of the chemical composition of the lower continental crust ranges from predominantly mafic to felsic. The Ivrea Zone in the Southern European Alps provides insight into this variability, featuring a pre-Permian mostly felsic lower crust modulated by additions of mafic rocks during Permian underplating. The Ivrea zone is an ideal location to examine major, trace, and volatile elements over the full range of proposed lower crustal compositions. Our study presents whole-rock data derived from a drill core of the first hole (DT-1B) of the ICDP-funded project DIVE (Drilling the Ivrea-Verbano Zone). The drilled section spans nearly 600 m, representing an upper part of the Ivrea lower continental crust. Logging of the drill core showed that biotite-gneisses (Qtz + Pl + Bt ± Gt ± Kfs ± Sil – 75 vol%) and metamafic rocks (Amp + Pl + Qtz ± Px ± Bt ± Gt – 21 vol%) are the main rock types with minor calcsilicate rocks (Cc + Gt + Px + Ttn + Qtz + Pl ± Amp – 2 vol%), and some minor pegmatites (2 vol%). Both targeted and grid sampling strategies aimed to minimize sampling bias, providing a reliable basis for understanding the Ivrea lower continental crustal composition and extrapolating the results toward a realistic assessments of the LCC composition in general.

Amphibolite facies metasediments (34 samples) range from calc-silicates to pelites and psammites, exhibiting a wide range of major element compositions (32 - 89 wt.% SiO2; 0.5 - 5.8 wt.% K2O; 0.35 - 0.54 Mg#). Metamafic rocks (16 samples) cover a more restricted compositional range (43 - 57 wt.% SiO2; 0.1 - 5 wt.% K2O; 0.3 - 3 wt.%; 0.36 - 0.61 Mg#). Most mafic rocks are LREE enriched, but a few resemble MORB-like compositions. A preliminary comparison of the bulk rock estimate of the entire drill core relative to the integrated composition derived from geological maps indicates that deviations between the two approaches are considerable, ranging from <10% up to 30% difference for major elements (calculated bulk vs compiled data from the literature: 62.8 vs 57.6 wt.% SiO2; 2.3 vs 1.95 wt.% K2O; 0.47 vs 0.50 Mg#). Results also indicate that fluid-mobile elements are mostly conservative with respect to potential protoliths. The chemical variability points to a possible origin of sediments derived from an accretionary wedge. The evaluation of bulk trace element ratios (i.e., Th/La, Sm/La, Nb/K2O) suggests that the drilled sequence likely originated from (Paleozoic?) turbidites. Subduction of sediments and accretion to the lower continental crust are the most likely processes to explain the predominance of metasediments in this part of the Ivrea lower continental crust.

How to cite: Secrétan, A., Degen, S., Pacchiega, L., Hermann, J., and Müntener, O.: Variability of lower continental crust constrained by drill core data of the Ivrea Zone (DIVE project DT-1B, Ornavasso, Val d’Ossola, Italy), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18222, https://doi.org/10.5194/egusphere-egu24-18222, 2024.

X2.81
|
EGU24-19465
Jamison Assunção, Nicolas Riel, Andrea Piccolo, and Victor Sacek

The relation between subduction dynamics, plate rheology and geometry is still not well understood. To numerically assess how subduction convergence velocity develops, a wide range of simulations is required to quantify any correlation between physical parameters and kinematic behavior of a subduction system. In this study, we performed a set of 2D numerical simulations designed to better constrain the range of rheological and geometrical conditions necessary to model subduction dynamics. We used the parallel numerical code LaMEM to simulate thermo-mechanical convection. In addition, we coupled these numerical simulations with MAGEMin to compute a self-consistent mineral assemblage of the asthenospheric mantle and the plates, and we parameterized the lower mantle using a linear equation, following the Clapeyron slope from Faccenda and Zilio (2017). The modeled region is 9300 km wide and accounts for both the upper and whole lower mantle. We consider an Andean type subduction system where our baseline scenarios are defined by a partially subducting oceanic plate beneath a continental plate. Once the simulation starts, the subducted portion of the oceanic plate triggers the subduction thanks to a weak zone between the lower and upper plate. The subduction is sustained by the negative buoyancy of the lower plate with respect to the surrounding mantle. We aim to simulate subduction dynamics that exhibit convergence velocities and long term behavior, including lower mantle penetration, similar to what is observed in nature. We investigate the role of the length of the subducting plate, the geometry of its composing lithological units, and the viscosity of the asthenosphere and the lower mantle. We find that the subduction velocity is inversely correlated with the non subduction length of the oceanic plate, and that a less viscous asthenospheric mantle increases the subduction speed. 

How to cite: Assunção, J., Riel, N., Piccolo, A., and Sacek, V.: Parametric study for self-sustained Andean-type subduction speed, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19465, https://doi.org/10.5194/egusphere-egu24-19465, 2024.

Posters virtual: Thu, 18 Apr, 14:00–15:45 | vHall X2

Display time: Thu, 18 Apr 08:30–Thu, 18 Apr 18:00
Chairpersons: Oğuz H Göğüş, Taras Gerya
vX2.7
|
EGU24-4319
|
Uros Stojadinovic, Marinko Toljić, Branislav Trivić, Radoje Pantović, Danica Srećković-Batoćanin, Nemanja Krstekanić, Bojan Kostić, Miloš Velojić, Jelena Stefanović, Nikola Randjelović, and Maja Maleš

Among the many examples observed worldwide, the Timok Magmatic Complex (TMC) basin of the Serbian Carpathians represents an excellent area for a process-oriented study on the interplay between tectonics, sedimentation, and magmatism in continental back-arc basins above evolving subducted slabs. The TMC is a segment of the larger Late Cretaceous Apuseni-Banat-Timok-Srednogorie (ABTS) magmatic belt, formed in response to the subduction of the Mesozoic Neotethys oceanic lithosphere beneath the Carpatho-Balkanides of south-eastern Europe. However, despite many qualitative studies, the quantitative link between the subducted slab's mechanics and the overlying basins' evolution is less understood. Within the scope of the newly funded TMCmod project, supported by the Science Fund of the Republic of Serbia (GRANT No TF C1389-YF/PROJECT No 7461), coupled field and laboratory kinematic and petrological investigations will be focused on creating a conceptual definition of the TMC geodynamic evolution, by combining near-surface observations with the known evolution of the subduction system. This definition will be subsequently validated through analogue modelling and integrated into a coherent geodynamic model of tectonic switching in basins driven by the evolution of subducted slabs. The new geodynamic model coupling the TMC basin with its Neotethys subduction driver will quantitatively advance the strategy of prospecting and exploration of world-class porphyry copper-gold deposits, which have been actively exploited in this region for more than a century. Furthermore, reconstructed regional kinematic evolution will improve seismic hazard assessment during industrial and societal infrastructure planning and construction.

How to cite: Stojadinovic, U., Toljić, M., Trivić, B., Pantović, R., Srećković-Batoćanin, D., Krstekanić, N., Kostić, B., Velojić, M., Stefanović, J., Randjelović, N., and Maleš, M.: Towards understanding the interplay between tectonics, magmatism, and sedimentation in the Timok Magmatic Complex (TMC) basin of the Serbian Carpathians, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-4319, https://doi.org/10.5194/egusphere-egu24-4319, 2024.