EGU24-703, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-703
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Integrated Monitoring and Multi-Hazard Early Warning System for Himalayan Region: Insights from the Chamoli Disaster of 2021

Anil Tiwari, Kalachand Sain, and Amit Kumar
Anil Tiwari et al.
  • Wadia Institute of Himalayan Geology (An Autonomous Institute of DST, GoI), 33 GMS Road , Dehradun, 248001, Uttarakhand, India

The material/rock failure is not a sudden progression but is preceded by multiple progressive nucleation phases during which relaxation or rearrangement of material leads to creep and accelerates with time before any major rupture. The monitoring of Himalayan surficial dynamics is challenging and expensive to access for scientific research purposes. The unfelt destructions produced by the surficial mass movement activities can only be recognized by satellite images if other monitoring is not possible. We focused on the Chamoli region, which is the most vulnerable or hazard-prone region in the NW Himalaya. Recently, on 7th February 2021, a huge rock-ice mass detached from the Raunthi peak at a height of 5600 m in the Chamoli district of Uttarakhand Himalaya. We found several pre-collapse and unfelt activities,in a post-mortem study, which were recorded at nearby highly sensitive broad-band seismic stations and radon detector instruments. The integrated study of the recorded signatures allows us to reconstruct the complete dynamic time-dependent nucleation phases, which intensify as time gets closer to the main detachment. Continuous monitoring of vulnerable regions, coupled with the identification and characterization of precursory signals, holds the fundamental clue for hazard mitigation. After the Chamoli disaster, we are more focused on monitoring unfelt activities and anomalies linked to hazards in the proximity of potentially endangered zones and also planning to deploy multi-parametric instruments such as automatic weather stations (AWS), broad-band seismometers (BBS), automatic water level recorders (AWLR) and infrasound array for real-time monitoring and integrated analysis with a view to forewarn against the hazards in the Himalayan terrain. The dense network of sensors will allow us to collect high-quality data and crucial information as a way forward for disaster mitigation and societal benefit.

How to cite: Tiwari, A., Sain, K., and Kumar, A.: Integrated Monitoring and Multi-Hazard Early Warning System for Himalayan Region: Insights from the Chamoli Disaster of 2021, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-703, https://doi.org/10.5194/egusphere-egu24-703, 2024.