EGU24-8175, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-8175
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Estimating methane emissions at high northern latitudes using regional data and global inverse modelling

Luana Basso1, Christian Rödenbeck1, Victor Brovkin2, Goran Georgievski2, and Mathias Göckede1
Luana Basso et al.
  • 1Max Planck Institute for Biogeochemistry (MPI-BGC), Biogeochemical Signals, Jena, Germany (lbasso@bgc-jena.mpg.de)
  • 2Max Planck Institute for Meteorology (MPI-MET), Climate Dynamics, Hamburg, Germany

Atmospheric methane levels (the second largest contributor to climate change) have more than doubled over the last 200 years, though with highly variable trends over time. The relative contribution of different sources and sinks to the global CH4 budget remains uncertain despite ongoing efforts to improve the estimates based on various approaches, and particularly the causes for an accelerated increase in recent years remain unclear. Therefore, understanding and quantifying methane sources at global to regional scales is essential to reduce uncertainties in the global methane budget and its feedback with the climate system.

Within the Arctic region, wetlands and lakes constitute a major natural source of methane. With temperatures rising at rates at least twice the global average over the last decades, Arctic permafrost is increasingly thawing. Associated disturbance processes hold the potential to increase methane emissions, and as a consequence result in a positive feedback to climate change. However, until now neither observations nor model estimates could provide clear evidence of such a trend in emissions. As a consequence, current and possible future contributions of Arctic ecosystems to the accelerated increase in the global atmospheric methane levels remain highly uncertain.

To help reduce methane emission uncertainties in the high northern latitudes, we estimated global CH4 fluxes to the atmosphere using the Jena CarboScope Global Inversion System, with a strong focus of our analysis on the Arctic region. We used wetland flux from JSBACH model as prior and assimilated atmospheric observations from regional networks available over the last years for the region above 60°N latitude (a total of 23 towers) to quantify the methane emissions over this region between 2010 to 2020. We found a clear seasonal pattern with emission peaks during July and August. As a sensitivity test to evaluate the improvement to constrain the Arctic methane fluxes with the assimilation of the regional data, we also conducted an inversion using just the global background surface stations (a total of 30 global stations). We found higher mean annual methane flux to the atmosphere when assimilating the regional data, with the largest difference between May to August. These estimates were finally evaluated against an ensemble of inverse model estimates from Global Methane Project available for the period between 2010 to 2017.

How to cite: Basso, L., Rödenbeck, C., Brovkin, V., Georgievski, G., and Göckede, M.: Estimating methane emissions at high northern latitudes using regional data and global inverse modelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8175, https://doi.org/10.5194/egusphere-egu24-8175, 2024.