EGU24-8432, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-8432
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Segregation of thermochemical anomaly and associated deep mantle plume outside the large low-velocity provinces

Jie Zhang and Jiashun Hu
Jie Zhang and Jiashun Hu
  • Southern University of Science and Technology, Department of Earth and Space Sciences, Shenzhen, China (zhangj2021@mail.sustech.edu.cn)

Plate tectonics plays a pivotal role in shaping the Earth's surface and is intricately linked to internal processes, including the subduction of cold slabs and the ascent of hot mantle plumes. Statistical analyses have unveiled a strong correlation between the distribution of large igneous provinces (LIPs) over the past 320 Ma and two large low-velocity provinces (LLVPs) beneath Africa and the Pacific Ocean. Consequently, hypotheses have emerged suggesting the long-term stability of these LLVPs. However, numerical modeling challenges this notion, suggesting that these basal mantle structures are mobile. To resolve these debates, we attempt to study these basal mantle structures from the evolution of intermediate-scale thermochemical anomalies. We report such an intermediate-scale thermochemical anomaly beneath the NW Pacific Ocean based on existing tomographic models and use paleogeographically constrained numerical models to study its evolution. Considering different plate configurations in North Pacific, our models consistently show that this anomaly was separated from the Perm anomaly by the subduction of the Izanagi slab in the Cretaceous. After the separation, it generated a mantle plume, inducing an oceanic plateau that got subducted beneath Kamchatka in Eocene. This scenario is consistent with multiple lines of evidence, including the seismic anomaly in the lower mantle, a seismically detected megameter-scale reflector that coincides with the subducted oceanic plateau and changes in Pacific Plate motion that correlated with the Eocene trench-plateau collision. We propose that intermediate-scale low velocity structures constantly undergo segregation and coalescing, and are sources of plumes that lie outside the two major LLVPs. Merging of the reported anomaly with the Pacific LLVP suggests the latter is still under assembly.

How to cite: Zhang, J. and Hu, J.: Segregation of thermochemical anomaly and associated deep mantle plume outside the large low-velocity provinces, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8432, https://doi.org/10.5194/egusphere-egu24-8432, 2024.