EGU24-9308, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-9308
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Geomorphological evolution of the Eastern Sardinian Margin (Western Tyrrhenian) from the Messinian to the Plio-Quaternary: New evidence for post-rift deformation from bathymetric and seismic data.

Romain Sylvain1, Virginie Gaullier1, Frank Chanier1, Louise Watremez1, Fabien Caroir1, Fabien Graveleau1, Johanna Lofi2, Agnès Maillard3, Françoise Sage4, Isabelle Thinon5, and Gaia Travan1
Romain Sylvain et al.
  • 1Univ. Lille, CNRS, Univ. Littoral Côte d’Opale, IRD, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F59000 Lille, France
  • 2Université de Montpellier, CNRS, UMR 5243, F34000 Montpellier, France
  • 3Université de Toulouse, CNRS, IRD, UMR 5563, Géosciences Environnement Toulouse GET, OMP, F31400 Toulouse, France
  • 4Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, IRD, UMR 7329, Géoazur, F06650 Valbonne, France
  • 5French Geological Survey (BRGM), F45060 Orléans, France

The hyper-extended Eastern Sardinian margin is due to the eastward migration of the Appennine-Calabria subduction zone, creating the Neogene back-arc Tyrrhenian Basin. This area was affected by strong erosion during the Messinian Salinity Crisis (MSC, 5.97 - 5.33 Ma) on the continental shelf and slope leading to a major discontinuity, known as the Messinian Erosion Surface (MES), constituting, therefore, a remarkable stratigraphic marker. It is also a powerful paleo-topographic marker of the MSC times and can be used as a marker of the deformation during Plio-Quaternary times. The end of the rifting phase in the Eastern Sardinian margin is dated during the Tortonian (11.63 - 7.25 Ma) attested by the occurrence of a relatively thick syn- and post-rift sequence pre-dating the MES.

The “METYSS 4” cruise led to the acquisition of more than 2,000 km of very high-resolution (VHR) seismic reflection data, following a dense grid, on the Eastern Sardinian continental shelf and slope, which has been little explored until now. Seismic interpretation allowed for mapping the major erosion surface, the MES, across the continental shelf and slope. At the base of the PQ sequence, the MSC paleo-topography highlights a hydrographic paleo-network identical to the current one and a general progradation of the shelf-break toward the east during the Plio-Quaternary. In the southern part of the study area, several east-dipping normal faults, oriented N-S, significantly shift the MES (between 5 and 55 m; assuming sound wave velocity of 1700 m/s in Plio-Quaternary sediments). The MES is tilted toward the fault and is covered by Plio-Quaternary deposits, which display a fan-shaped geometry (eg. 50 m thick on the hanging wall). These NS-trend faults are cross-cut by E-W trending messinian canyon and this fault pattern is also observed on the other flank of the canyon. The along-strike geomorphological analysis of canyons reveals the occurrence of knickpoints (slope breaks) coinciding with the front of the two fault patterns. Moreover, the shifts in water depth of most knickpoints are at the same order of amplitude than fault offsets (ie. 10 to 50 m). These geomorphologic markers reinforce the hypothesis that the fault activity is recent (ie. less than 5 Ma). We interpret these observations as markers of a recent reactivation of the structures inherited from the rift in the western part of the Tyrrhenian Sea.

How to cite: Sylvain, R., Gaullier, V., Chanier, F., Watremez, L., Caroir, F., Graveleau, F., Lofi, J., Maillard, A., Sage, F., Thinon, I., and Travan, G.: Geomorphological evolution of the Eastern Sardinian Margin (Western Tyrrhenian) from the Messinian to the Plio-Quaternary: New evidence for post-rift deformation from bathymetric and seismic data., EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9308, https://doi.org/10.5194/egusphere-egu24-9308, 2024.