PS5.2 | Observations and Modeling of Planets within the Solar System and Beyond

PS5.2

EDI
Observations and Modeling of Planets within the Solar System and Beyond
Convener: Maggie ThompsonECSECS | Co-conveners: Daniel WilliamsECSECS, Emeline Bolmont, Fabian SeidlerECSECS, Neil LewisECSECS, Elsa DucrotECSECS, Aurélien Falco

Planetary science is entering an exciting new technological era with advanced spacecraft providing the most in-depth view of planetary bodies in our Solar System, together with large aperture telescopes like JWST that will characterize the physics and chemistry of exoplanets in our galaxy. From the terrestrial and gas giant planets in our Solar System, to the exoplanet population of super-Earths and sub-Neptunes, rocky worlds, and gaseous planets like hot Jupiters, coupled observational and modeling efforts are needed in order to understand planetary diversity. In this session, we welcome contributions spanning observational and theoretical research that seeks to better understand the properties of planets both within and beyond the Solar System. In the coming decades, the main avenue for characterizing exoplanets will be through observations of their atmospheres. Since an in-depth study of every planet’s atmosphere is becoming increasingly impractical with the ever-growing number of known exoplanets, a comparative planetology approach, with tools including parameter surveys and statistical techniques, is increasingly important. Therefore, we invite works on the nature of planetary atmospheres, especially those with a comparative viewpoint. Of the many exoplanet systems that JWST has started to observe, the Trappist-1 system is one of the most exciting, with 7 transiting terrestrial-sized worlds. In this session, we also welcome efforts related to the formation, evolution and habitability potential of planets in this fascinating system.

Planetary science is entering an exciting new technological era with advanced spacecraft providing the most in-depth view of planetary bodies in our Solar System, together with large aperture telescopes like JWST that will characterize the physics and chemistry of exoplanets in our galaxy. From the terrestrial and gas giant planets in our Solar System, to the exoplanet population of super-Earths and sub-Neptunes, rocky worlds, and gaseous planets like hot Jupiters, coupled observational and modeling efforts are needed in order to understand planetary diversity. In this session, we welcome contributions spanning observational and theoretical research that seeks to better understand the properties of planets both within and beyond the Solar System. In the coming decades, the main avenue for characterizing exoplanets will be through observations of their atmospheres. Since an in-depth study of every planet’s atmosphere is becoming increasingly impractical with the ever-growing number of known exoplanets, a comparative planetology approach, with tools including parameter surveys and statistical techniques, is increasingly important. Therefore, we invite works on the nature of planetary atmospheres, especially those with a comparative viewpoint. Of the many exoplanet systems that JWST has started to observe, the Trappist-1 system is one of the most exciting, with 7 transiting terrestrial-sized worlds. In this session, we also welcome efforts related to the formation, evolution and habitability potential of planets in this fascinating system.