AS1.22 | Mid-latitude Cyclones and Storms: Diagnostics of Observed and Future Trends, and related Impacts
Mid-latitude Cyclones and Storms: Diagnostics of Observed and Future Trends, and related Impacts
Co-organized by CL5/NH1
Convener: Gregor C. Leckebusch | Co-conveners: Jennifer Catto, Joaquim G. Pinto, Uwe Ulbrich
Orals
| Fri, 19 Apr, 08:30–10:15 (CEST)
 
Room 0.11/12
Posters on site
| Attendance Fri, 19 Apr, 10:45–12:30 (CEST) | Display Fri, 19 Apr, 08:30–12:30
 
Hall X5
Posters virtual
| Attendance Fri, 19 Apr, 14:00–15:45 (CEST) | Display Fri, 19 Apr, 08:30–18:00
 
vHall X5
Orals |
Fri, 08:30
Fri, 10:45
Fri, 14:00
This session investigates mid-latitude cyclones and storms on both hemispheres. We invite studies considering cyclones in all different stages of their life cycles, from initial generation to the final development, including studies to large- and synoptic-scale conditions influencing cyclones’ growth to a severe storm, their dissipation, and related socioeconomic impacts.
Papers are welcome, which focus also on the diagnostic of observed past and recent trends, as well as on future storm development under changed climate conditions. This will include storm predictability studies on different scales. Finally, the session will also invite studies investigating impacts related to storms: Papers are welcome dealing with vulnerability, diagnostics of sensitive social and infrastructural categories and affected areas of risk for property damages. Which risk transfer mechanisms are currently used, depending on insured and economic losses? Which mechanisms (e.g., new reinsurance products) are already implemented or will be developed in order to adapt to future loss expectations?

Orals: Fri, 19 Apr | Room 0.11/12

Chairpersons: Gregor C. Leckebusch, Jennifer Catto
08:30–08:35
08:35–08:45
|
EGU24-3651
|
ECS
|
On-site presentation
Juan Crespo, Catherine Naud, Rosa Luna-Niño, James Booth, and Derek Posselt

Latent and sensible heat fluxes (LHF and SHF, respectively) within the marine boundary layer are believed to play a significant role in the genesis and evolution of Extratropical Cyclones (ETCs) and Atmospheric Rivers (ARs, often associated with ETCs in the midlatitudes). However, consistent observations of air-sea interactions with in-situ observatories are limited in both time and space, and traditional polar orbiting satellites may miss large swaths in the lower midlatitudes due to their orbits, leading to daily gaps in coverage where the most robust fluxes often occur and change rapidly. Satellite missions like CYGNSS (Cyclone Global Navigation Satellite System) have filled in data gaps by providing improved observations over the lower midlatitudes of air-sea interactions. These improved observations of air-sea processes, coupled with observations of cloud and precipitation structure within ETCs and ARs from other satellites, like GPM and MODIS, can help one begin to link the correlations between surface heat fluxes to changes of the mesoscale features within these synoptic-scale systems. Previous studies have shown the correlation of observed surface heat fluxes to precipitation and cloud thickness increases along the frontal regions. Still, they have only looked at the connections between ETCs and ARs when LHF and SHF were at their strongest or the peak intensity of the system, not during its early formation (or just before formation) when they may be at their strongest. 

Additionally, recent studies have examined through idealized models how surface heat fluxes within an ETC can impact the development of ETCs and ARs upstream of the primary cyclone and lead to multiple ETCs in succession, often called a family or temporal clustering of ETCs and ARs. This clustering can lead to significant and excessive precipitation over parts of the globe, such as the United States West Coast in early 2023, with successive ARs over one month. Improved observations of real-world conditions can help us better understand the interplay within these systems. This presentation will highlight the role air-sea interactions may have during the genesis and early evolution of ETCs and ARs, the correlations to cloud and precipitation structure changes, the upstream impacts, and setting the groundwork that will be able to show that air-sea interactions directly impact the development of these systems.

How to cite: Crespo, J., Naud, C., Luna-Niño, R., Booth, J., and Posselt, D.: Air-Sea Flux Influences on Extratropical Cyclone and Atmospheric River Mesoscale Development and Upstream Temporal Clustering, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3651, https://doi.org/10.5194/egusphere-egu24-3651, 2024.

08:45–08:55
|
EGU24-3675
|
Highlight
|
On-site presentation
Emanuele Silvio Gentile, Ming Zhao, and Kevin Hodges

In this work, we investigate the global impact of midlatitude cyclones on the geographical distribution and intensity of near-surface extreme wind speeds in a warmer climate. We use  state-of-the-art high-resolution general circulation models developed by the Geophysical Fluid Dynamics Laboratory. Results indicate a clear poleward shift of extreme wind speeds, driven by the associated shift in midlatitude storm tracks, and attributed to global warming and associated changes in general circulations. The total number of midlatitude cyclones decreases by roughly 4%, but the proportion of cyclone-associated extreme wind speed events increases by 10% in a warmer climate. Notably, the research has identified Northwestern Europe, the British Isles, and the West Coast of North America as hot spots with the greatest socio-economic impacts from increased cyclone-associated extreme winds. In addition, we also use the GFDL ultra-high resolution global storm resolving model to study cyclone-associated extreme winds.

How to cite: Gentile, E. S., Zhao, M., and Hodges, K.: Poleward intensification of midlatitude extreme winds under warmer climate, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3675, https://doi.org/10.5194/egusphere-egu24-3675, 2024.

08:55–09:05
|
EGU24-3750
|
ECS
|
On-site presentation
Emerson DeLarme, Jianping Li, Hongyuan Zhao, Yuan Liu, and Ruipeng Sun

Bomb cyclones over land are an understudied phenomenon. As such, there are open questions about the underlying physical processes, for example, why do bomb cyclones stop deepening. Atmospheric energetics is a prevalent approach to solve such problems, however the commonly used method of Available Potential Energy is not valid at local scales. Therefore, this study aims to provide further insight into the life cycle of bomb cyclones, specifically over land, by conducting a case study of the bomb cyclone that occurred over North America at the end of December 2022, focusing on the energetics using the Perturbation Potential Energy (PPE) framework. Hourly ERA5 reanalysis data provides the improved time resolution needed to study the evolution of such a rapidly developing system. PPE analysis of the evolution of this bomb cyclone reveals a possible stop signal to the positive feedback loop associated with explosive deepening. Further research is needed to clarify the mechanics associated with this thermodynamic signal.

How to cite: DeLarme, E., Li, J., Zhao, H., Liu, Y., and Sun, R.: Perturbation Energetics of the December 2022 Bomb Cyclone over North America, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-3750, https://doi.org/10.5194/egusphere-egu24-3750, 2024.

09:05–09:15
|
EGU24-7310
|
ECS
|
On-site presentation
Jun-Hyeok Son, Christian L.E. Franzke, and Seok-Woo Son

North Atlantic extra-tropical storms are some of the most severe weather systems, causing enormous economic damages and threatening human lives. In general, these storms are characterized by strong cyclonic convergent surface winds, upward vertical flow, and precipitation. In specific confined areas inside the storm where downward flows occur with clear sky, extreme surface wind speeds are observed. Such a horizontal variation of vertical wind direction and surface wind speed can cause severe and damaging impacts; however, the underlying key dynamics are not understood. Here we show the dynamical and thermodynamical linkage between the horizontal wind impinging on the frontal surface at the lower troposphere, downward flow, and very intense surface wind speeds inside the storm. The anti-clockwise cyclonic wind into the cold frontal area is mainly responsible for generating the downward flow, which transports the high-altitude horizontal momentum to the surface layer causing intense surface wind speeds. About half of North Atlantic storms accompany the downward wind, and that downward flow is more frequently observed in the southern and western part of the storm center. Overall results illuminated in this paper have a far-reaching impact in multiple ways to enhance forecasting skills for devastating weather events associated with extra-tropical storms.

How to cite: Son, J.-H., Franzke, C. L. E., and Son, S.-W.: Unlocking the dynamics of extreme wind speeds of North Atlantic storms, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7310, https://doi.org/10.5194/egusphere-egu24-7310, 2024.

09:15–09:25
|
EGU24-10642
|
ECS
|
On-site presentation
Marc Federer, Lukas Papritz, Michael Sprenger, Christian M. Grams, and Marta Wenta

The global atmospheric circulation is maintained by the conversion of available potential energy (APE) into kinetic energy. At midlatitudes, this conversion occurs to a large extent in extratropical cyclones through baroclinic instability. Although kinetic energy is easily defined locally, APE is typically defined as a global integral. Therefore, local APE conversion is not well understood.

Here, we investigate local APE conversion within the North Atlantic storm track using ERA5 reanalysis data. We utilize a recently introduced formulation of APE, which is exact and defined locally for individual air parcels. First, we explore APE conversion during a period of rapid cyclogenesis, which we then extend to a climatology of extratropical cyclones.

Our results indicate that the synoptic upper-level flow determines the distribution of high APE values, which are primarily located in the high-latitude upper troposphere. We show that APE is converted locally into kinetic energy by descending air parcels within the ageostrophic circulation, for example, induced by a jet streak upstream of an extratropical cyclone. The local APE originates not only from advection from the polar, upper-tropospheric APE reservoir, but also from local generation by vertical motion. In fact, the net baroclinic conversion of APE to kinetic energy is the result of much larger positive and negative local contributions. Thus, the global Lorenz energy cycle is more complex on synoptic scales. In addition, we show that surface heat fluxes resulting from air-sea interactions and latent heat release act as diabatic sinks for APE. However, the effect of surface heat fluxes is small compared to the conversion of APE to kinetic energy, as little APE is located in the mid-latitude lower troposphere.

In summary, the study shows that the local APE perspective allows the energetics of North Atlantic extratropical cyclones to be better understood in terms of local APE advection as well as adiabatic (ascent and descent) and diabatic effects.

How to cite: Federer, M., Papritz, L., Sprenger, M., Grams, C. M., and Wenta, M.: Synoptic perspective on the conversion and maintenance of local available potential energy in extratropical cyclones, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10642, https://doi.org/10.5194/egusphere-egu24-10642, 2024.

09:25–09:35
|
EGU24-10673
|
On-site presentation
Warm conveyor belts in present-day and future climate simulations – Climatology, impacts and role for cyclone intensification 
(withdrawn)
Hanna Joos, Michael Sprenger, Hanin Binder, Katharina Heitmann, and Heini Wernli
09:35–09:45
|
EGU24-13459
|
ECS
|
On-site presentation
Andressa Andrade Cardoso and Rosmeri Porfírio da Rocha

Subtropical cyclones when occurring close to the coast can be very dangerous for human activities bringing high amounts of precipitation, intense winds and gusts in the coastal cities. This can lead to natural hazards and risks, such as floods, inundations, and even deaths. Over the southeast coast of Brazil, seven subtropical cyclones occur on average each year, with higher frequency in austral summer and autumn.  However, there are still few studies focusing on its global models climatology and future projections. It is crucial to evaluate how accurate are the global climate models of the new HighResMIP-CMIP6 dataset, with fine horizontal high-resolution, in representing subtropical cyclones in the historical period. Thus, this study assesses the classification of the subtropical cyclones based on two reanalyses (ERA5 and ERA-Interim) to evaluate the fine-resolution HighResMIP-CMIP6 datasets.  First, we tracked all cyclones over the South Atlantic Ocean applying an automatic scheme using relative vorticity at 925 hPa. Then, the vertical structure of the cyclones are accessed by calculating three parameters (symmetry, thermal wind at low and upper levels) from the cyclone phase space approach. Finally, we classified subtropical features using an automatic scheme based on a pre-establish threshold. In general, the approach is able for classifying subtropical cyclones providing realistic climatology. Overall, for the total of cyclones, ERA5, ERAInterim and HighResMIP-CMIP6 reproduce similar areas of great cyclogenetic activity over the eastern coast of South America.  In terms of frequency, it is greater in ERA5 than ERAInterim, for both total and subtropical cyclones, while a similar behavior is noted in relation to the seasonal frequency. HighResMIP-CMIP6 tends to overestimate the total of cyclones in subtropical latitudes, impacting directly the frequency of the subtropical ones. 

How to cite: Andrade Cardoso, A. and Porfírio da Rocha, R.: Assessing high-resolution global climate models in simulating subtropical cyclones over the southeast coast of Brazil, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-13459, https://doi.org/10.5194/egusphere-egu24-13459, 2024.

09:45–09:55
|
EGU24-17127
|
ECS
|
On-site presentation
Tobias Lichtenegger, Armin Schaffer, Douglas Maraun, Albert Osso Castillon, and Heimo Truhetz

Atmospheric fronts and cyclones play an important role in day-to-day weather variability, especially in the mid-latitudes and during the winter season. Severe rainfall and windstorm events are often associated with the passage of a front or a cyclone. While there are many studies of individual fronts and climatologies based on objectively detected fronts, there is no comprehensive study considering the whole frontal life cycle over time. Therefore, a front and cyclone tracking algorithm, based on overlapping features at consecutive time steps, is used together with an improved front detection method to detect and track cold fronts and cyclones over the North Atlantic and Europe in the extended winter season (October - March) in the ERA5 reanalysis dataset. Several life cycle characteristics, e.g. the duration, velocity, frontogenesis and -lysis regions as well as dynamic and thermodynamic frontal parameters are defined to investigate the frontal life cycle and the conditions and processes in the frontal region. Fronts are linked to their parent cyclone to study relationships between frontal and cyclonic properties. The study confirms that fronts are mostly formed over the western and central North Atlantic and travelling along the main storm track into the European continent. During positive phases of the North Atlantic Oscillation, fronts are travelling faster and further and are associated with stronger precipitation and surface wind speeds over their whole life cycle. Stronger cyclones are related to stronger dynamics in the frontal region.

How to cite: Lichtenegger, T., Schaffer, A., Maraun, D., Osso Castillon, A., and Truhetz, H.: A Cold Frontal Life Cycle Climatology and Front-Cyclone Relationships over the North Atlantic and Europe during Winter, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-17127, https://doi.org/10.5194/egusphere-egu24-17127, 2024.

09:55–10:05
|
EGU24-18002
|
ECS
|
On-site presentation
Colin Manning, Sean Wilkinson, Hayley Fowler, Elizabeth Kendon, and Sarah Dunn

Windstorms are the main cause of large power outages in the UK. Faults to electricity distribution networks during windstorms are predominantly a result of windthrow, the uprooting or breakage of trees by winds that then fall on assets such as overhead lines. The impact of strong winds on windthrow is influenced by a several conditions: trees uproot more easily in saturated soils, they are more vulnerable to strong winds from unusual directions, and they are more susceptible to strong winds in the growing season when their leaves catch the wind. Despite this, risk assessments of impacts, such as power outages, during windstorms generally focus on wind intensity alone. Here, we quantify the influence of contributing variables of windthrow including antecedent rainfall, wind direction of the maximum wind gust, and the season a windstorm occurs in. We demonstrate that including them in a logistic regression model alongside wind speed can improve the predictive skill of the number of electricity faults during windstorms compared to a reference model that only includes wind speed. The analysis uses fault data from the National Fault and Interruption Scheme (NaFIRs) database during the period 2006-2018 in four regions in the UK: South Wales, Southwest England, East Midlands, and West Midlands. Meteorological data is provided by ERA5. Each variable is shown to modulate the impact of strong winds and improve predictive skill, though with some regional variability. The probability of a high fault numbers in a windstorm with winds exceeding 25 m/s can be doubled following high rainfall accumulations and five times higher when strong winds come from a direction that deviates more than 40 degrees south or west from the prevailing south-westerly direction. Furthermore, this probability is doubled in summer months compared to winter. These results can help improve impact forecasting during windstorms and highlight the importance of including these variables in historical and future risk assessments of assets vulnerable to windthrow. Ignoring such contributions may lead to misrepresentation of risk and potential maladaptation, particularly for electricity distribution networks that will undergo a huge transformation as we reduce our dependence on greenhouse gases in the future.

How to cite: Manning, C., Wilkinson, S., Fowler, H., Kendon, E., and Dunn, S.: Power outages in windstorms: the influence of rainfall preconditioning, wind direction and season, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-18002, https://doi.org/10.5194/egusphere-egu24-18002, 2024.

10:05–10:15
|
EGU24-20374
|
ECS
|
On-site presentation
Sandeep Chinta, Adam Schlosser, Xiang Gao, and Kevin Hodges

Extratropical cyclones (ETCs) in South Africa usually occur during the winter (June to August), specifically influencing the Western Cape, causing extreme rain and strong winds. We investigate future changes in these winter-time ETCs using the simulations from three CORDEX-CORE Africa models. Each of these models was driven by three Coupled Model Intercomparison Project phase 5 (CMIP5) General Circulation Models (GCMs), resulting in nine sets of simulations. The simulations are from 1970-2100, with scenarios starting from 2006. We identified the cyclone tracks using the Hodges tracking algorithm, which used 6-hourly relative vorticity data at 850 hPa level. We chose a 20-year historical period from 1986 to 2005 for comparison with a future period of the same length from 2080 to 2099, focusing on the Representative Concentration Pathway (RCP) 8.5 scenario for the future projections. We observed a projected decrease in the number of ETCs in the future. The average track distance and duration are also projected to reduce. These reductions are statistically significant. We explored the future changes in the ETC-associated rainfall, which is also projected to be reduced in the future. We are currently looking at extending our analysis with the high-resolution 4 km gridded Climate Predictions for Africa (CP4A) data and see how our earlier results compare with the high-resolution data.

How to cite: Chinta, S., Schlosser, A., Gao, X., and Hodges, K.: How do winter-time extratropical cyclones change in the future over South Africa?, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-20374, https://doi.org/10.5194/egusphere-egu24-20374, 2024.

Posters on site: Fri, 19 Apr, 10:45–12:30 | Hall X5

Display time: Fri, 19 Apr, 08:30–Fri, 19 Apr, 12:30
Chairpersons: Jennifer Catto, Joaquim G. Pinto, Uwe Ulbrich
X5.41
|
EGU24-599
|
ECS
Miguel Lima, Luana C. Santos, Rita M. Cardoso, Pedro M. M. Soares, and Ricardo M. Trigo

Windstorms in Europe are responsible for more than half of the economic loss associated with natural disasters. In October 2018 a post-tropical cyclone, formerly Hurricane Leslie, made landfall in continental Portugal. This event was characterized by very intense winds, with a gust record-hitting value of 176 km/h registered near Figueira da Foz, a coastal city located in the center of the country. The main factors causing this event of extreme winds were likely a “cold-conveyor belt jet” or a “jet sting”, roughly 12 hours after losing its main tropical characteristics. Despite the strong impact associated with this windstorm there are still few studies modeling this kind of dynamics, and here we present a simulation and thorough analysis of the rare dynamics linked with this post-tropical cyclone affecting western Europe.

The WRF-ARW model, version 4.4.1, was used to numerically model Leslie as it transitioned from a hurricane to post-tropical cyclone. Three one-way nested domains were used with a large (5 km), medium (1 km), and lower (200m) resolution, with 68 hybrid levels (15 m - 20 hPa). The larger domain covers the Iberian Peninsula and a large portion of the Atlantic Ocean nearby, while the inner ones are focussed in the central and northern sectors of continental Portugal - the most affected areas. Initial and boundary conditions were retrieved from the GFS operational analysis at 0.25º spacing, in 6-hour intervals. Due to the difficulties modeling this cyclone, nudging was used in the outer domain to ensure that the cyclone would make landfall as close as possible to the real location.

Several state-of-the-art thermodynamics-based diagnostics were used to analyze in-depth the midlatitude cyclone dynamics observed in the recently transitioned cyclone Leslie. Midlatitude cyclone-related dynamics were identified in the simulation, leading to the extreme winds in the most impacted region. The set of final simulated data reveals a close resemblance to the real event, with parameterized wind gusts presenting a lower intensity around 140 km/h, but the largest values impacting approximately the same region of center Portugal. A Langragian approach was also used to study particle trajectories and evaluate the atmospheric circulation leading to the extreme winds showing vertical downdrafts up to 4 m/s. This study highlights the catastrophic potential a post-tropical cyclone such as Leslie has and, while at the end of their life-time with presumably less intensity, storms of this type should not be disregarded for warnings and need to be considered in general evaluations of midlatitude storm impacts.

Acknowledgements: This work was funded by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) I.P./MCTES through national funds (PIDDAC) – UIDB/50019/2020. M. M. Lima was supported through the PhD MIT Portugal MPP2030-FCT programme grant PRT/BD/154680/2023. L. C. Santos is supported by the EarthSystems Doctoral School, at University of Lisbon, supported by Portuguese Fundação para a Ciência e a Tecnologia (FCT) project UIDP/50019/2020-2023, University of Lisbon.

How to cite: Lima, M., C. Santos, L., M. Cardoso, R., M. M. Soares, P., and M. Trigo, R.: Langragian analysis of the extreme-windstorm dynamics associated to post-tropical cyclone Leslie landfall in Portugal, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-599, https://doi.org/10.5194/egusphere-egu24-599, 2024.

X5.42
|
EGU24-1418
|
ECS
|
Highlight
Julia Moemken, Gabriele Messori, and Joaquim G. Pinto

Windstorms are among the most impacting natural hazards affecting Western and Central Europe. Information on the associated impacts and losses are essential for risk assessment and the development of adaptation and mitigation strategies. In this study, we compare reported and estimated windstorm losses from five datasets belonging to three categories: Indices combining meteorological and insurance aspects, natural hazard databases, and loss reports from insurance companies. We analyse the similarities and differences between the datasets in terms of reported events, the number of storms per dataset and the ranking of specific storm events for the period October 1999 to March 2022 across 21 European countries.

A total of 94 individual windstorms were documented. Only 11 of them were reported in all five datasets, while the large majority (roughly 60%) was solely recorded in single datasets. Results show that the total number of storms is different in the various datasets, although for the meteorological indices such number is fixed a priori. Additionally, the datasets often disagree on the storm frequency per winter season. Moreover, the ranking of storms based on reported/estimated losses varies in the datasets. However, these differences are reduced when the ranking is calculated relative to storm events that are common in the various datasets. The results generally hold for losses aggregated at European and at country level.

Overall, the datasets provide different views on windstorm impacts. Thus, to avoid misleading conclusions, we use no dataset as “ground truth” but treat all of them as equal. We suggest that these different views can be used to test which features are relevant for calibrating windstorm models in specific regions. Furthermore, it could enable users to assign an uncertainty range to windstorm losses. We conclude that a combination of different datasets is crucial to obtain a representative picture of windstorm associated impacts.

How to cite: Moemken, J., Messori, G., and Pinto, J. G.: Windstorm losses in Europe - What to gain from damage datasets, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1418, https://doi.org/10.5194/egusphere-egu24-1418, 2024.

X5.43
|
EGU24-1553
|
ECS
Kelvin S. Ng and Gregor C. Leckebusch

Extreme extra-tropical cyclones and related windstorms are the most dangerous and costly meteorological hazards in Europe. The latest state-of-the-art seasonal forecast suites show now usable forecast skill for basic parameters like mean temperature or precipitation for mid-latitude Europe on lead times of up to 4 months (Nov-Feb). One avenue for skilful prediction of extremes is the now-proven forecast skill for large-scale climate modes, as these directly influence extreme windstorms. Improved ability to simulate successfully the relevant large-scale climate patterns like e.g., the North-Atlantic Oscillation, the East-Atlantic pattern, and/or the Scandinavian pattern opens up a prominent route to progress the forecast skill for extreme storms.

Nevertheless, recent publications have shown that even in the current model suites, the existing skill for forecasting the frequency or intensity of windstorm tail events, is not fully explained by those dominant large-scale variability patterns. Furthermore, studies revealed a potential connectivity of storm count predictions to stratospheric sudden warming events and also highlighting the influence of atmosphere-ocean coupling. Recent developments in the forecast skill of the upper-ocean heat content and the role of re-emerging temperature anomalies for the European winter climate allow to explore another pathway with potentially predictive power, the role of ocean-atmosphere interaction. Ocean-atmosphere interaction caused e.g., by the NAO have been increasingly recognised but have not been systematically linked to the ability to predict extreme severe windstorms on a seasonal time scale. In this presentation, we will present preliminary results of the role of ocean on the predictability of European windstorms.

How to cite: Ng, K. S. and Leckebusch, G. C.: An Investigation into the Role of the Ocean for Seasonal Predictability of European Windstorms, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1553, https://doi.org/10.5194/egusphere-egu24-1553, 2024.

X5.44
|
EGU24-1736
|
ECS
|
Highlight
Sophie Feltz, Gregor C. Leckebusch, Kelvin S. Ng, and Tim Kruschke

Severe European winter windstorms are one of the most damaging natural hazards and thus a major threat to societies. Clustered European winter windstorms, storms that occur in quick succession over a specific period of time over a fixed location, can result in amplified structural and environmental damage and accumulated losses. Yet, variability of storm clustering on intra-seasonal timescales has not been fully investigated. We analyse winters (DJF) for the period 1981-2016 from ERA5 reanalysis, where tracks and storm impact footprints are identified through the impact-oriented wind-based tracking algorithm WiTRACK.  

We quantify the magnitude of clustering using the widely employed dispersion statistic as used in Mailier et al. (2006). The spatial distribution of clustering on 45- and 30-day timescales as well as the time development of clustering on even shorter 30-, 20-, 15- and 11-days reference periods are investigated. Thus, in a seamless approach from seasonal to synoptic clustering. Results from both windstorm clustering of tracks and the storm footprints will be presented. Preliminary findings suggest an increase in clustering occurrence in the later half of the winter season on 45- and 30-day timescales.  On shorter timescales (<30 days), depending on location, distinct periods of increased clustering e.g., in the middle and the end of the season can be identified.

How to cite: Feltz, S., Leckebusch, G. C., Ng, K. S., and Kruschke, T.: Intra-seasonal variability of temporal clustering of European winter windstorms, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1736, https://doi.org/10.5194/egusphere-egu24-1736, 2024.

X5.45
|
EGU24-5188
|
ECS
|
Alice Portal, Olivia Martius, Shira Raveh-Rubin, and Jennifer L Catto

Mediterranean cyclones are the main driver of surface weather extremes in the Mediterranean region. In this work we establish a new procedure for the attribution of different types of meteorological extremes to Mediterranean cyclones, where we also distinguish the presence of different airflows (warm conveyor belts, dry intrusions) and fronts composing the structure of a cyclone. We apply the procedure to a dataset of rain-wind and wave-wind compound extremes extracted from ERA5 reanalysis in a recent climatological period, and show that the majority of weather compounds occurring in the Mediterranean area is indeed linked to the presence of a nearby cyclone. The association of compound rain-wind events with Mediterranean cyclones locally surpasses an 80% level, while interesting differences between transition seasons and winter are detected. Winter cyclones - generally stronger, larger and distinctively baroclinic - are associated with a higher compound density. The de-construction of the cyclone in airflows and fronts evidences a strong association of rain-wind compounds with regions of warm conveyor belt ascent, and of wave-wind compounds with regions of dry intrusion outflow.

How to cite: Portal, A., Martius, O., Raveh-Rubin, S., and Catto, J. L.: A climatology of Mediterranean cyclones and compound weather extremes, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-5188, https://doi.org/10.5194/egusphere-egu24-5188, 2024.

X5.46
|
EGU24-16634
|
ECS
|
Armin Schaffer, Tobias Lichtenegger, Douglas Maraun, Heimo Truhetz, and Albert Ossó

Understanding the processes driving extreme precipitation is paramount to socioeconomic interest. In the mid-latitudes extreme precipitation events are strongly associated with cold fronts. By exploring drivers across a wide range of scales, this study aims to improve our understanding of processes influencing frontal precipitation. Past research predominately focused on detailed studies of individual frontal extreme events. Here we present the first climatological study of frontal characteristics and their impact on precipitation.
Using hourly resolved ERA5 data, cold fronts are detected using the equivalent potential temperature gradient, and associated conditions from the synoptic to the meso-scale are identified. Further, seasonal and regional dependencies are explored. Quantile regression models are employed to find the strongest drivers of frontal precipitation and to quantify these relationships. Additionally, composite analysis are used to study the synoptic conditions and meso-scale structure of extreme events.
Findings reveal that humidity close to the frontal boundary, convergence of different scales and the low level jet speed contribute most to formation of extreme precipitation events. Interestingly, we discovered that stronger fronts, characterized by a significant change in humidity, do not always lead to a higher chance of extreme precipitation. This is evident in the weak correlation between the humidity gradient and frontal precipitation, in contrast with the relationship observed for the temperature gradient.
The findings of this study improve our understanding of cold frontal processes. Additionally, they provide the foundation to evaluate model performance and climate change projections. 

How to cite: Schaffer, A., Lichtenegger, T., Maraun, D., Truhetz, H., and Ossó, A.: Drivers of Cold Frontal Hourly Extreme Precipitation: A Climatological Study, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16634, https://doi.org/10.5194/egusphere-egu24-16634, 2024.

X5.47
|
EGU24-6370
|
ECS
Lorenzo Aiazzi, Simone Persiano, Michele Bottazzi, Glauco Gallotti, Antonio Petruccelli, Farid Ait-Chaalal, and Giovanni Leoncini

Windstorms are one of the most destructive natural disasters in Europe, causing considerable human and economic impacts, ranging from fatalities and injuries to damage to agriculture, infrastructures, and properties. The European Commission’s Joint Research Centre (JRC) estimates annual losses of 5 €-billion for the European Union and United Kingdom (Spinoni et al., 2020). While in these areas there is not high confidence on the projected changes in windstorm intensity and frequency due to climate change (Ranasinghe et al., 2021), damages resulting from windstorms will most likely increase in the future due to the appreciation of asset values (Spinoni et al., 2020).

Although Italy is one of the most affected European countries, with annual absolute losses estimated above 0.5 €-billion (Spinoni et al., 2020), windstorm is still considered to be a secondary peril. However, severe windstorm events in the last few years (e.g., Storm Vaia in October 2018) have raised an increasing interest of the Italian insurance industry in understanding and modelling this peril.

In this context, we aim at developing a catastrophe model that quantifies the financial impacts of windstorms on the insurance market in Italy. To this aim, here we perform the calibration of a stochastic windstorm event set for the hazard component of the model. Uncalibrated footprints are obtained from simulation outputs of global and regional numerical models. Then, historical event footprints are extracted from open-access reanalysis datasets (e.g., ERA5, CERRA) and used to correct the climatology of the stochastic set and to adjust the wind-speeds of its individual events. This analysis is expected to be preparatory for the development of a comprehensive catastrophe model that combines wind hazard with exposure and vulnerability to assess windstorm-related financial losses in Italy.

 

References:

Ranasinghe, R., et al., 2021: Climate Change Information for Regional Impact and for Risk Assessment. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., et al., (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1767–1926, doi: 10.1017/9781009157896.014.

Spinoni, J., et al., 2020: Global warming and windstorm impacts in the EU, EUR 29960 EN, Publications Office of the European Union, Luxembourg, 2020, ISBN 978-92-76-12955-4, doi:10.2760/039014. JRC118595.

How to cite: Aiazzi, L., Persiano, S., Bottazzi, M., Gallotti, G., Petruccelli, A., Ait-Chaalal, F., and Leoncini, G.: A catastrophe model for Windstorm in Italy: developing a stochastic windstorm event set adjusted with open-access reanalysis datasets, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6370, https://doi.org/10.5194/egusphere-egu24-6370, 2024.

X5.48
|
EGU24-7801
|
ECS
|
Lisa Bernini, Leone Cavicchia, Fabien Desbiolles, Antonio Parodi, Claudia Pasquero, and Enrico Scoccimarro

Using tracks from a reference dataset (Flaounas et al., 2023), cyclones in the Mediterranean Sea have been classified based on thermal winds (Hart, 2003). This classification allowed us to explore the major differences between extra-tropical cyclones with a cold inner core and tropical-like cyclones with a
deep inner warm core. For that purpose, the time evolution along the cyclones’ lifetime of different environmental characteristics taken from the ERA5 reanalysis has been studied. Warm-core cyclones are characterized by higher surface wind speeds, larger air-sea fluxes, and more intense precipitations. In comparison to cold-core cyclones, their development is favored by low wind shear and high moisture levels in the mid-troposphere. Different proxies also attest the major importance of the convective process in the establishment of the warm core. Finally, their dissipation seems to be driven by an abrupt decrease in the mid-level moisture content. This decrease is possibly related to the occlusion phase of the cyclone, and not to a limitation of moisture supply at the surface due to landfall.

How to cite: Bernini, L., Cavicchia, L., Desbiolles, F., Parodi, A., Pasquero, C., and Scoccimarro, E.: Environmental Characteristics Associated with the Tropical Transition of Mediterranean Cyclones, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-7801, https://doi.org/10.5194/egusphere-egu24-7801, 2024.

X5.49
|
EGU24-8101
|
ECS
Onno Doensen, Martina Messmer, Woon Mi Kim, and Christoph Raible

Extratropical cyclones play a dominant role in the Mediterranean. They are important for local water supplies, but they can also cause severe damage due to heavy winds, extreme precipitation and coastal floods. Over the last decades, a decrease in the number of extratropical cyclones in the Mediterranean has been observed. Climate models suggest that this decreasing trend will continue in the future under global warming, leading to fewer storms and dryer conditions over the region compared to the present. However, it is much less clear how extreme cyclones in the Mediterranean will respond to climate change. Our previous study, based on a simulation from the Community Earth System Model (CESM) covering the last 3500 years, indicates that extreme cyclones show a distinct centennial variability in frequency, cyclone-related precipitation and wind speed. In addition, we found a weak relation between atmospheric circulation modes and varying cyclone characteristics across different regions in the Mediterranean. However, the coarse horizontal resolution of CESM (2.0°×2.5°) is not very well suited to resolve the mesoscale cyclones that often occur in the Mediterranean. For this study, we downscaled the CESM simulation for the period 1821–2100 (RCP8.5 scenario from 2005 onwards) to a horizontal grid resolution of 20 km using the Weather Research and Forecasting (WRF) model. The WRF simulation can resolve the cyclone characteristics in the Mediterranean more accurately than CESM. Additionally, the WRF simulation is able to reproduce the complexity of cyclone-related wind speed and precipitation in a much more detailed way. Preliminary results show a strong decrease in cyclone frequency as a result of global warming. However, this trend is much less clear for extreme cyclones with respect to wind speed and precipitation. Using the long downscaled WRF simulation, we intend to identify characteristics in CESM that lead to extreme wind and precipitation in the downscaled simulation. Additionally, we will investigate the most extreme wind and precipitation events in the Mediterranean to understand what processes are better captured at smaller scales than in the global model.

How to cite: Doensen, O., Messmer, M., Kim, W. M., and Raible, C.: Past and future Mediterranean cyclone characteristics using a regional climate model, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8101, https://doi.org/10.5194/egusphere-egu24-8101, 2024.

X5.50
|
EGU24-11704
Lorenzo Sangelantoni, Stefano Tibaldi, Leone Cavicchia, Daniele Peano, and Enrico Scoccimarro

This study explores whether and why a warmer climate induces alterations in climatological statistics and the underlying physical features of lee cyclogenesis in the Euro-Mediterranean region.

The investigation focuses on a specific cyclogenesis type, wherein orography (the Alps), influences the spatial structure and growth rate of the cyclone.

This regional scale phenomenon is inspected within the framework of a general weakening and poleward shift of the mid-latitude jet. This large-scale signal, despite being evident in zonal-averaged results from the majority of climate models, remains subject to considerable uncertainty when specific regions and seasons are considered. This uncertainty stems from the intricate interplay and delicate equilibrium among numerous competing mechanisms.

The analysis focuses on historical and future trends during the cold semesters across the Euro-Mediterranean region. The historical period is examined using ERA5 reanalysis spanning from 1940 to the present, supplemented by a higher-resolution regional reanalysis product (COSMO-REA6) at approximately 6 km resolution, covering the period 1995-2019 over the Euro-CORDEX (EUR11) domain. State-of-the-art high-resolution climate models are employed to assess historical reproducibility and future trends through an ensemble of global climate models from the HighResMIP initiative.

Methodologically, two distinct approaches are pursued. Firstly, changes in statistical properties of lee cyclogenesis are examined, along with composites of precipitation and wind extremes footprint, utilizing two tracking algorithms: TempestExtremes (Ullrich et al., 2021) and TRACK (Hodges, 1994). These algorithms differ in their identification/tracking variables, i.e., mean sea level pressure and 850hPa relative vorticity, respectively. Secondly, an empirical orthogonal function (EOF) analysis is employed to evaluate whether dominant spatial patterns of relevant variables (e.g., mean sea level pressure and 500hPa geopotential height) associated with cyclogenesis undergo significant changes across different time segments.

This investigation is conducted as a spin-off of the Copernicus-ECMWF-funded contract C3S2_413 - Enhanced Operational Windstorm Service. The findings aim to enhance our understanding of the complex dynamics of Euro-Mediterranean lee cyclogenesis in the context of a changing climate, providing further insights for climate science and operational windstorm services.

How to cite: Sangelantoni, L., Tibaldi, S., Cavicchia, L., Peano, D., and Scoccimarro, E.: Climate change signature on Euro-Mediterranean lee cyclogenesis, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-11704, https://doi.org/10.5194/egusphere-egu24-11704, 2024.

X5.51
|
EGU24-16593
|
ECS
Ana C. R. Gonçalves, Raquel Nieto, and Margarida L. R. Liberato

During the extended winter period from December 2017 to April 2021, the Iberian Peninsula (IP) was impacted by several high-impact storms characterized by intense precipitation and/or strong winds. This study provides a detailed assessment of the events, including synoptic conditions, large-scale dynamics associated with the storms, and a climatological analysis aimed at improving public understanding and preventing natural disasters. The analysis of the cyclones’ variability indicates that their maximum intensity varies between 955 hPa and 985 hPa, with a duration of two to four days, and the most frequent occurrence (eight events) was in January. At the peak of maximum intensity, the composite anomaly patterns showed lower mean sea level pressure (MSLP) values (−21.6 hPa), higher water vapor values (327.6 kg m−1s−1), and wind speed at 250 hPa exceeding 29.6 m s−1 the mean values. Additionally, there were high anomaly values of equivalent potential temperature (θe) of 19.1 °C at 850 hPa, sea surface temperature (SST) anomaly values of −1 °C, and negative anomaly values of surface latent heat flux (QE) (−150 W m−2) close to the IP. During the days impacted by the storms, the recorded values surpassed the 98th percentile in a significant percentage of days for daily accumulated precipitation (34%), instantaneous wind gusts (46%), wind speed at 10 m (47%), and concurrent events of wind/instantaneous wind gusts and precipitation (26% and 29%, respectively). These findings allow us to describe their meteorological consequences on the IP, particularly the effects resulting from intense precipitation such as floods, and strong winds associated with various destructive impacts. Finally, clear, real-time, and predictive information about weather systems and their impacts is crucial for the public to understand and enable effective responses to mitigate these natural hazards damage.

Keywords: extreme events; extratropical cyclones; explosive development cyclones; winter storms; Iberian Peninsula.

 

Acknowledgments

This work was funded by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) I.P./MCTES through national funds (PIDDAC)–UIDB/50019/2020 (https://doi.org/10.54499/UIDB/50019/2020), UIDP/50019/2020 (https://doi.org/10.54499/UIDP/50019/2020) and LA/P/0068/2020 (https://doi.org/10.54499/LA/P/0068/2020), and project WEx-Atlantic (PTDC/CTAMET/29233/2017, LISBOA-01-0145-FEDER-029233, NORTE-01-0145-FEDER-029233). FCT is also providing for Ana Gonçalves doctoral grant (2021.04927.BD). The EPhysLab group was also funded by Xunta de Galicia, Consellería de Cultura, Educación e Universidade, under project ED431C 2021/44 “Programa de Consolidación e Estructuración de Unidades de Investigación Competitivas.

 

 References

Gonçalves, A.C.R.; Nieto, R.; Liberato, M.L.R. Synoptic and Dynamical Characteristics of High-Impact Storms Affecting the Iberian Peninsula during the 2018–2021 Extended Winters. Atmosphere 2023, 14, 1353. https://doi.org/10.3390/atmos14091353

How to cite: C. R. Gonçalves, A., Nieto, R., and L. R. Liberato, M.: High-impact storms during the extended winters of 2018–2021 in the Iberian Peninsula, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16593, https://doi.org/10.5194/egusphere-egu24-16593, 2024.

X5.52
|
EGU24-14305
Leone Cavicchia, Enrico Scoccimarro, and Silvio Gualdi

Intense cyclones form frequently in the Mediterranean region, with the potential to cause damage to life and property when they hit highly populated coastal areas. Cyclone impacts are caused by the associated strong winds, flash flooding and storm surge. The social and economic impacts are not limited to the Mediterranean area, as cyclones forming in the region can affect Central Europe. While the skill of weather models to forecast such events has dramatically improved over the last decade, the seasonal predictability of Mediterranean cyclones lags behind due to the limitations on horizontal resolution in probabilistic forecasts requiring a large ensemble of simulationss. Improving the climate prediction at a seasonal scale of those extreme events would be of great benefit for society, enabling better disaster risk management and reducing the economic losses they cause. A better prediction of climate extremes would also directly benefit a number of economic sectors such as the insurance and re-insurance industry.

The ambition of the CYCLOPS project is to use Artificial Intelligence techniques to enhance the prediction skills of Mediterranean cyclones in a state-of-the-art Seasonal Prediction System. Here we present initial results making use of AI to link those extreme events to their large-scale driver. The training of different machine learning models is performed using ERA5 reanalysis data. The assessment of model skill is evaluated on the C3S operational seasonal forecast in hindcast mode. The performance of machine learning models of varying complexity (e.g. random forest, artificial neural networks) is evaluated.

How to cite: Cavicchia, L., Scoccimarro, E., and Gualdi, S.: Towards AI-enhanced prediction of Mediterranean cyclones, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14305, https://doi.org/10.5194/egusphere-egu24-14305, 2024.

X5.53
|
EGU24-19896
|
ECS
Aditya N. Mishra, Douglas Maraun, Reinhard Schiemann, Kevin Hodges, and Giuseppe Zappa

Cut-off Lows (COLs) are mid-latitude storms that are detached from the main westerly flow. They tend to propagate slower than other mid-latitude storms and are often harbingers of heavy and persistent rainfall. COLs have long been subject to thorough studies that have examined the physical structure and climatology across both hemispheres, however, their assessment in models is relatively low. In fact, there is no study on future changes in COLs in models. In this study, we analyze the cut-off lows in the northern hemisphere in the historic and future time slices in the CMIP6 dataset to study the frequency, duration, and intensity of the cut-off lows alongside the changes in velocity. Results show that the COL season, which is currently mostly limited to summer, extends into spring over Europe, North America, and Asia. This rise in activity in spring is more pronounced for COLs that are long-lasting and also have higher intensity maxima, i.e., the most impactful ones. Moreover, COL propagation velocity for persistent systems is due to slow down over North America in the summer. Slow-moving COLs are known to cause heavy localized rainfall. Through this study, we fill the information gap on the first insights of projected future changes in COLs by using TRACK to detect and trace COLs in the SSP5-8.5 projections of the CMIP6 ensemble.

 

How to cite: Mishra, A. N., Maraun, D., Schiemann, R., Hodges, K., and Zappa, G.: Climate change's influence on Cut-off Lows in the future, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19896, https://doi.org/10.5194/egusphere-egu24-19896, 2024.

X5.54
|
EGU24-14720
|
ECS
|
Koryu Yamamoto, Keita Iga, and Akira Yamazaki

A cutoff low that covered Central Europe in the middle of July 2021 brought heavy rainfall and severe flooding, resulting in more than 200 fatalities. This low was formed by a trough on 11 July and merged with another cutoff low around 12–13 July. Analysis of the energy budget and potential vorticity suggests that the main cutoff low was maintained through the merger with another cutoff low; this was the dominant contributor to maintenance of the main cutoff low around 12–13 July. The results of Lagrangian trajectory analyses support this conclusion. Analysis of diabatic PV modification during the merger indicates that radiation acts mainly to enhance the potential vorticity of the parcels when they move from another cutoff low into the main cutoff low, especially in the upper layer (~ 350 K). However, that effect is not pronounced in the lower layer (~ 330 K). These results demonstrate that cutoff lows can be maintained through the merger with another cutoff low and underline the need to consider diabatic processes when investigating mergers.

How to cite: Yamamoto, K., Iga, K., and Yamazaki, A.: Mergers as the Maintenance Mechanism of Cutoff Lows: A Case Study over Europe in July 2021, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-14720, https://doi.org/10.5194/egusphere-egu24-14720, 2024.

Posters virtual: Fri, 19 Apr, 14:00–15:45 | vHall X5

Display time: Fri, 19 Apr, 08:30–Fri, 19 Apr, 18:00
Chairpersons: Uwe Ulbrich, Gregor C. Leckebusch, Joaquim G. Pinto
vX5.3
|
EGU24-1974
|
ECS
Pooja Pooja and Ashok Priyadarshan Dimri

The Indian Himalayan region receives an enormous amount of precipitation due to synoptic weather systems known as Western Disturbances (WDs). WDs are east-ward propagating systems embedded in the Subtropical Westerly Jetstream (SWJ). The main objective of this study is to investigate the change in magnitude and dynamics of WDs precipitation over the western Himalayan region. In this study, different observational datasets (IMD, AHRODITE, GPCP, GPCC, and ERA5) were selected to compare and assess the magnitude of WDs precipitation for the period 1987–2020 during the winters (DJF: December, January, and February). Further, to examine the structure of WDs precipitation at the pressure level of 200hPa, ERA5 Reanalysis datasets having a similar resolution of 25 km with the gridded dataset of the Indian Meteorological Department (IMD) are used for the analysis. WDs moisture sources from the Arabian Sea are assessed at 23 pressure levels (1000–200 hPa) for further understanding of WDs dynamics. Our study shows the daily shifting of WDs precipitation towards February during the winters and an intriguing decrease in daily WDs precipitation in recent years. During the study, we found that WDs precipitation contributed a significant amount of precipitation (~80%) over the Western Himalayan region of the Indian subcontinent. Using Theil-Sen method, trend analysis was performed, showing a decreased trend of WDs precipitation in recent years The present findings indicate that WDs have changed their precipitation characteristics and dynamics due to climate change. The number of active WDs days is decreasing. Our results show there is enough moisture present over the Bay of Bengal region other than WDs which helps in sustaining and replenishing glaciers over the Indian Himalayan region.

How to cite: Pooja, P. and Dimri, A. P.: Shifting of Western Disturbances winter precipitation over Western Himalayas, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-1974, https://doi.org/10.5194/egusphere-egu24-1974, 2024.