SM1.3 | The January 1, 2024 Mw7.5 Noto Peninsula, Japan, earthquake, associated tsunami, and earthquake swarm
The January 1, 2024 Mw7.5 Noto Peninsula, Japan, earthquake, associated tsunami, and earthquake swarm
Co-organized by NH4, co-sponsored by JpGU
Convener: Luca C Malatesta | Co-convener: Alice-Agnes Gabriel
Orals
| Tue, 16 Apr, 08:30–10:15 (CEST)
 
Room D3
Tue, 08:30
On New Year’s Day 2024, a shallow Mw 7.5 earthquake hit the Noto Peninsula on the back-arc side of Central Japan. Very intense shaking caused more than 200 casualties and widespread damage to the built infrastructure. The quake triggered a tsunami, numerous landslides, rockfall, and widespread liquefaction. The north of the Peninsula moved by several meters during the rupture. This earthquake is the largest event of a sustained seismic swarm that started in 2020. In this late special session, we will review early analysis of the earthquake, the associated tsunami, its effect on surface processes, and the consequences on the population, infrastructure, and emergency response.

Orals: Tue, 16 Apr | Room D3

08:30–08:35
08:35–08:45
|
EGU24-22539
|
solicited
|
Virtual presentation
Takuya Nishimura, Yoshihiro Hiramatsu, and Yusaku Ohta

Since November 30, 2020, an intense earthquake swarm with over 22,000 M≥1 earthquakes and transient deformation have been continuously observed in the Noto Peninsula, central Japan, which is a non-volcanic/geothermal area far from major plate boundaries. During the earthquake sequence, Mw6.2 and Mw7.5 earthquakes occurred on May 5, 2023, and January 1, 2024, respectively. We report the transient and coseismic deformation related to the earthquake sequence by a combined analysis of multiple Global Navigation Satellite System (GNSS) observation networks, including one operated by a private sector company (SoftBank Corp.), relocated earthquake hypocenters, and tectonic settings. The start of the transient deformation coincides with a burst-type activity of small earthquakes in late 2020. A total displacement pattern in the first two years shows horizontal inflation and uplift of up to ~60 mm around the source of the earthquake swarm. The overall deformation rate gradually decreased with time except for the coseismic displacement of the Mw 6.2 earthquake and its postseismic displacement. On January 1, 2024, the coseismic horizontal and vertical displacements reached ~2 m at several GNSS sites. The pattern of the postseismic displacement for the first three weeks is similar to that of the coseismic displacement, though spatial decay of the postseismic displacement from the epicentral area is much gentler than that of the coseismic displacement. Viscoelastic relaxation of the mantle and/or lower crust is probably an important factor in explaining the observed deformation. In order to explain the transient deformation before the Mw6.2 and Mw7.5 earthquakes, we assumed a southeast-dipping fault plane based on the observed seismicity and regional tectonics and estimated the distribution of both reverse-slip and tensile components on the fault plane. In the first three months, a significant tensile component with a small slip component was estimated around a depth of ~15 km. The estimated volumetric increase is ~1.4 x 107 m3. Over the next 15 months, the observed deformation was well reproduced by shear-tensile sources, which represent an aseismic reverse-type slip and the opening of the southeast-dipping fault zone at a depth of 14–16 km. These slips and openings of the fault are estimated mainly at the down-dip extension of the intense earthquakes. We suggest that the upwelling fluid spread at a depth of ~16 km through an existing shallow-dipping permeable fault zone and then diffused into the fault zone, triggering a long-lasting sub-meter aseismic slip below the seismogenic depth. The aseismic slip further triggered intense earthquake swarms including the Mw6.2 and Mw7.5 earthquakes at the updip.

Acknowledgments: We are grateful to SoftBank Corp., ALES Corp., and GSI for providing us with GNSS data.

How to cite: Nishimura, T., Hiramatsu, Y., and Ohta, Y.: Deformation of the 2020-2024 Noto Peninsula earthquake sequence revealed by combined analysis of multiple GNSS observation networks in central Japan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22539, https://doi.org/10.5194/egusphere-egu24-22539, 2024.

08:45–08:55
|
EGU24-22522
|
solicited
|
On-site presentation
Aitaro Kato and Takuya Nishimura

A destructive M7.6 earthquake occurred on January 1st, 2024, at shallow depths along the northern coast of Noto Peninsula on the back-arc side of Central Japan. The earthquake rupture started from an area where an intensive seismic swarm has lasted for more than 3 years (from December 2020). The seismic swarm consisted of numerous small planar faults dipping toward the southeast. In May 2023, an M6.5 event, that was the largest event before the M7.6 rupture, emanated from the swarm area toward shallow depths, resulting in the subsequent increase in the seismicity in the swarm area (Kato 2024 GRL). Then, the seismicity had gradually decayed to a level before the 2023 M6.5 event. Here we have explored the seismic and geodetic data to revel the nucleation process of the M7.6 event. Approximately two weeks before the M7.6 event, seismic activity exhibited a weak localization around the point of rupture initiation. After that, a foreshock sequence commenced roughly one hour before the occurrence of the M7.6 event, concentrated in proximity to the epicenter (within a 1-kilometer epicentral distance). The tightly clustered foreshock sequence consisted of around 20 events, including an M5.5 event 4 minutes prior and an M3 class event 1 second before the onset of M7.6 event. The M7.6 rupture nucleated from the deep side of one of planar clusters that were dominantly dipping toward the southeast direction. The growth process of the rupture in the M7.6 event is characterized by a complicated nature.

How to cite: Kato, A. and Nishimura, T.: Foreshock sequence prior to the 2024 M7.6 Noto-Hanto earthquake, Japan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22522, https://doi.org/10.5194/egusphere-egu24-22522, 2024.

08:55–09:05
09:05–09:15
|
EGU24-22563
|
ECS
|
solicited
|
On-site presentation
Haipeng Luo, Zhangfeng Ma, Hongyu Zeng, and Shengji Wei

Seismic hazard evaluation at critical infrastructures, such as nuclear power plant, urges deeper understanding on the fundamental physics that govern the initiation, propagation and termination of damaging earthquakes. The 2024 moment magnitude (Mw) 7.5 Noto Peninsula earthquake produced great hazards and exhibited complex rupture process. We derive high-resolution 3D surface deformation of the event using dense space geodetic observations, which reveal two major deformation zones separated by ~40 km along the coast of the Peninsula. Two large (>10m) shallow slip asperities with over 10 MPa stress drop on the thrust faults explain excellently the geodetic observations. A calibrated back-projection using teleseismic array high-frequency data shows that the rupture was stagnant around the hypocentre for ~20s before it propagated bilaterally at the speed of 3.4 km/s and 2.8 km/s towards southwest and northeast, respectively. The slow start of the rupture coincides with the seismic swarm surged since 2020 due to lower crust fluid supply, suggesting low normal stress (high pore fluid pressure) at the bottom edge of the seismogenic zone slowed down the initial rupture. The first major asperity of the rupture was accompanied with intense high frequency seismic radiation, and such radiation is even stronger from the largest asperity located at the southern edge of the Peninsula where the Peak-Ground-Acceleration (PGA) exceeding 2.6G at a site that is less than 40km away from the nuclear power plant. Large stress accumulation together with rough fault geometry and/or friction are likely responsible for the exceedingly large high-frequency radiation, which is mostly responsible for devasting damages.

How to cite: Luo, H., Ma, Z., Zeng, H., and Wei, S.: The 2024 Mw 7.5 Noto Earthquake, shallow rupture with a stagnant initiation in a fluid-rich immature fault zone, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22563, https://doi.org/10.5194/egusphere-egu24-22563, 2024.

09:15–09:25
|
EGU24-22540
|
solicited
|
Virtual presentation
Hiroyuki Goto, Ayaka Nakatsuji, Dongliang Huang, and Silvana Montoya-Noguera

The Noto Peninsula earthquake (MJ7.6, MW7.5) caused extensive damage to buildings and infrastructure in the Noto Peninsula located in the northern part of Ishikawa prefecture, Japan. The hypocenter was within the area of the earthquake swarm that started in 2020. However, the source fault bilaterally ruptured over a length of 150 km beyond this area. The main residential areas in Wajima, Suzu, and Anamizu are located almost above the western segment of the reverse fault. The geographical features of the Noto Peninsula pose significant challenges for aid and support, particularly due to embankment and soil failures that caused main road closure or limited access. This has led to increased traffic on the few accessible routes, further delaying the arrival of support. The situation has hindered the restoration of essential services such as water and sewage systems and has slowed down the process of demolishing buildings deemed dangerous.

Valuable strong motions were observed during this event. The maximum Peak Ground Acceleration (PGA) in the horizontal component reaching 2.78g was recorded at the K-NET ISK006 station, a location known for significant site amplification around 0.2s. This value aligns with the dominant period in the Spectral Acceleration (Sa), thus the extreme PGA was probably due to the enhanced short-period component in the shallow soil amplification. In addition, K-NET ISK002 and ISK005 recorded large PGVs of 1.31 m/s and 1.59 m/s, respectively, and observed the remarkable Sa with 1.3g and 2.2g at T=1.0s, respectively, which are similar to the damage-prone record in the 1995 Kobe earthquake (JR Takatori record).

In the main residential areas of Anamizu and Wajima, two seismic stations are operated. One is located on the stiff soil ground, and the other is located in zones where residential damage was most severe. In both Anamizu and Wajima, the records at the damage site were amplified in the periods of 1-4 s, suggesting that the residential damage is related to the site amplification. Since the spectral ratio of the weak motions shows the amplification at periods of less than 1s, the major reason for the amplification at periods of 1 to 4 seconds during the main event is due to the nonlinear response of the soil ground.

How to cite: Goto, H., Nakatsuji, A., Huang, D., and Montoya-Noguera, S.: Ground motions and geotechnical aspects of the Noto Peninsula earthquake, Japan, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22540, https://doi.org/10.5194/egusphere-egu24-22540, 2024.

09:25–09:35
09:35–09:45
|
EGU24-22523
|
solicited
|
Highlight
|
On-site presentation
Shunichi Koshimura, Bruno Adriano, Ayumu Mizutani, Erick Mas, Yusaku Ohta, Shohei Nagata, Yuriko Takeda, Ruben Vescovo, Sesa Wiguna, Takashi Abe, and Takayuki Suzuki

The tsunami generated by the Mw7.6 earthquake of Noto Peninsula, Japan left widespread impact. We analyzed multi-modal information and data to elucidate its impact.

We modeled the tsunami propagation and inundation with multiple tsunami source models based on GNSS-based crustal movement and tsunami waveform data to understand its propagation and inundation characteristics. The model results are verified by using post-tsunami field survey data. Preliminary tsunami modeling results implied that severe tsunami impacts were around Noto Peninsula (Shika to Nanao). Through the visualization of tsunami propagation model, we found that the remarkable tsunami refraction around the continental shelf of Noto Peninsula were responsible for high tsunamis in Suzu City. This distinctive sea bottom topography also affected the directivity of tsunami energy toward the Japan sea coasts, especially Joetsu city, Nigata Prefecture. Tsunami in Toyama bay had long duration of oscillation caused by multiple-reflection. The leading (negative) tsunami wave could not be explained by fault rupture and this implied the possibility of submarine landslides.

The post-tsunami field survey teams at Suzu City preliminarily found tsunami run-ups of 3 m or higher with flow depths of 2.5m or higher. Inside the tsunami inundation zone around Noto Peninsula, we found at least 648 houses out of 3398 were destroyed by both the strong ground motion and tsunami.

The cellphone-based population data (Mobile Spatial Statistics) were used to analyze the exposed population in the aftermath of the event. The hourly population estimates with 500m spatial resolution in the coastal communities implied how people reacted and were affected. Approximately 2500 population increase were found in the areas above 10 m after the major tsunami warning was issued.

How to cite: Koshimura, S., Adriano, B., Mizutani, A., Mas, E., Ohta, Y., Nagata, S., Takeda, Y., Vescovo, R., Wiguna, S., Abe, T., and Suzuki, T.: The Impact of the 2024 Noto Peninsula Earthquake Tsunami, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22523, https://doi.org/10.5194/egusphere-egu24-22523, 2024.

09:45–09:55
|
EGU24-22535
|
solicited
|
Highlight
|
On-site presentation
Yuki Matsushi

This presentation will report preliminary results of multifaceted analyses for the geomorphological aspects of the Mw 7.5 earthquake struck northern tip of the Noto Peninsula, Japan, at 16:10JST on January 1, 2024. The earthquake caused significant uplift of the northern coastal areas of the peninsula, accompanying a tsunami observed widely in the surrounding coastline, along with extensive tectonic deformations observed inland. Spatial extent of the crustal movements accords generally with the relief structures and distribution of marine terraces in the Noto Peninsula, implying the long-term tectonic forcing on the landscape evolution in this region. Numerous coseismic landslides occurred in steep mountainous terrains, which yield vast volume of sediment from hillslopes into fluvial channels. Inventory mapping revealed the localized distribution of the landslides, regulated most probably by geologic and topographic conditions. Areal density of the landslides can be explained by coupled factors of lithological susceptibility of the hillslopes to the seismic shaking and amplification of ground motion at the hilltops.

How to cite: Matsushi, Y.: Geomorphological consequences of the 2024 Noto Peninsula Earthquake: tectonic deformations, coseismic landslides, and their implications, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22535, https://doi.org/10.5194/egusphere-egu24-22535, 2024.

09:55–10:05
10:05–10:15
|
EGU24-22541
|
solicited
|
On-site presentation
Kyoko Kataoka, Atsushi Urabe, Ryoko Nishii, Takane Matsumoto, Hirofumi Niiya, Naoki Watanabe, Katsuhisa Kawashima, Shun Watabe, Yasuhiro Takashimizu, Norie Fujibayashi, and Yasuo Miyabuchi

The Niigata (Echigo) Plain facing the Sea of Japan is located downstream of two large rivers (the Shinano-gawa River and the Agano-gawa River), and has three sand dune ridges which formed along the coastal areas during the Holocene. Niigata city, with a population of ~770,000, lies in the lower catchment of the alluvial-coastal system. Despite the city being approximately 160 km away from the epicenter of the January 1st 2024 Mw 7.6 Noto Peninsula Earthquake, extensive damage to houses, buildings, and infrastructure occurred throughout Niigata city due to pervasive liquefaction (resulting from the earthquake) in the coastal and lowland areas.

Our field investigation focuses on the Nishi-ku (west ward) of the city, where much of the liquefaction-induced building damage (~ 700 houses at the time of submission of the abstract) is concentrated. Although our “ground truth” fieldwork is still ongoing, we have manually mapped the distribution of damaged houses/buildings, road deformation, sand boiling (sand volcanoes), cracks, slides, groundwater springs and other related phenomena onto map sheets, before then digitising these data using GIS.  The distribution of damage is concordant with geomorphology—such as the Holocene sand dunes (and associated landforms) and buried meander loop of the Shinano-gawa River—as well as with subsurface geology (e.g. the location of the water table). Some damage areas are coincident with artificially modified landforms.

Liquefaction conspicuously occurred on natural (i.e. not artificially modified) gentle slopes of the Holocene coastal sand dunes and interdune swale/lowland. In particular, ground was liquefied in the lower parts of the landward slope of the sand dune (formed ~1800­–900 years ago) which has a lateral extension of ~7 km at the elevation of ~0–3 m above sea level. Sandy subsurface geology and high groundwater level of the Holocene sand dune, together with the force of gravity on the slopes, were probable contributors to liquefaction.

Evidence for liquefaction —including damage to houses—was observed in modern residential areas developed above the buried meander loops of the Shinano-gawa River, which have been historically filled in artificially with sandy material. Damage was also noted in houses built upon an artificially buried pond. However, there was no liquefaction on the natural levee along the abandoned meander loops where relatively old settlements are present.

Similar liquefaction occurred in Niigata city on the sand dune slopes and associated lowlands at the time of the M 7.5 Niigata Earthquake in 1964; the epicenter was in the Sea of Japan, approximately 60 km from the city.  Despite the Noto Peninsula Earthquake occurring remotely from Niigata, the aftermath of the earthquake indicates that certain geomorphologic and geological factors, coupled with particular seismic conditions, can result in repeated liquefaction. 

The field observation is still ongoing after the earthquake. Therefore this abstract is based on tentative results and analysis of our investigation so far. Further information on liquefaction related to the geomorphology and subsurface geology in this area will be available by the time of the 2024 EGU General Assembly.

How to cite: Kataoka, K., Urabe, A., Nishii, R., Matsumoto, T., Niiya, H., Watanabe, N., Kawashima, K., Watabe, S., Takashimizu, Y., Fujibayashi, N., and Miyabuchi, Y.: Extensive liquefaction and building damage on the Niigata Plain due to the 1 January 2024 Noto Peninsula Earthquake: Geomorphological and geological aspects and land-use in coastal and lowland areas, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-22541, https://doi.org/10.5194/egusphere-egu24-22541, 2024.