EGU25-1021, updated on 14 Mar 2025
https://doi.org/10.5194/egusphere-egu25-1021
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Poster | Monday, 28 Apr, 14:00–15:45 (CEST), Display time Monday, 28 Apr, 08:30–18:00
 
vPoster spot 1, vP1.8
Multiscale Surface Wave Tomography of the Bhutan Himalayas using Ambient Seismic Noise and Teleseismic Earthquake Data 
Gaurav Kumar and Ashwani Kant Tiwari
Gaurav Kumar and Ashwani Kant Tiwari
  • Indian Institute of Science Education and Research Bhopal India , Earth and Environmental Science , India (gauravk20@iiserb.ac.in)

The tectonic framework of Bhutan Himalaya documents significant along-strike variability in crustal structure and deformation. To visualize this spatial and depth variability, we compile an extensive dataset of surface-wave phase velocities derived from seismic ambient noise and teleseismic earthquakes recorded by the temporary GANSSER network (2013-2014) in Bhutan, aiming to produce Rayleigh phase-velocity maps over the period range of 4 to 50 seconds. We translate the phase-velocity maps into a 3-D shear-wave velocity model stretching from the surface to a depth of 42 kilometres. The employed methodologies enable imaging of the upper to mid-crustal and lower crustal velocity anomalies with a lateral resolution of approximately 25 km. The obtained tomographic model fills a void in the prior established shear-wave velocity structure of Bhutan, encompassing depths from upper-crustal to lowermost crust. Our findings indicate notable mid-crustal to lower-crustal high phase velocity anomalies in central Bhutan (around 90.5). The presence of this significant anomaly within the mid- to lower crustal layer may indicate localized stress accumulation along the Main Himalayan Thrust (MHT) resulting from the interaction of the dipping and sub-horizontal Moho. This area might act as a stress concentration zone, resulting in increased deformation and enhanced shear-wave velocity in the crust. Minor fluctuations in velocity across latitude may result from variations in the local geometry of MHT (dip or ramp-flat transition). Localised high shear velocity in western Bhutan may indicate a zone of crustal thickening. Northeastern Bhutan exhibits modest shear velocity, possibly because of a flat Moho and the partial creeping behaviour of the MHT.

 

How to cite: Kumar, G. and Tiwari, A. K.: Multiscale Surface Wave Tomography of the Bhutan Himalayas using Ambient Seismic Noise and Teleseismic Earthquake Data , EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-1021, https://doi.org/10.5194/egusphere-egu25-1021, 2025.