- 1Friedrich-Alexander-Universität, Erlangen-Nürnberg, GeoZentrum Nordbayern, Department of Geography and Geosciences, Erlangen, Germany
- 2EarthByte Group, School of Geosciences, University of Sydney, Sydney, New South Wales, Australia
- 3Institute for Marine and Antarctic Sciences, University of Tasmania, Tasmania, Australia
Researching large-scale responses of organisms and ecosystems to deep-time perturbations requires a paleogeographic reconstruction of ancient Earth. Deep-time paleogeographic reconstruction rests on the foundations of tectonic modelling. The GPlates suite offers a continuously-developed, open-source solution for the development and interrogation of global tectonic models. These allow the implementation of key components of deep-time ecological research, such as the analysis of geographic ranges, the study of bioregionalization, the spatiotemporal analysis of diversity dynamics, and ecological niche modelling, to mention a few. However, the difficulty of using tectonic models and making fossil occurrence record data interact with them in the R environment, the standard scripting environment for paleoecological research, has been limiting the integration of paleogeographic and paleontological research.
Here we present the R extension package 'rgplates', which provides access to the calculations implemented in the GPlates Web Service and the GPlates desktop application via its command-line interface. Besides the reconstructions of point paleocoordinates, the package allows the access and manipulation of more complex vector features with the popular 'sf' extension. We present the basic feature set of the package and provide examples demonstrating their relevance to paleoecological calculations using occurrence records from the Paleobiology Database, as well as derived reconstruction products, such as digital elevation models and paleoclimatic models. In short, 'rgplates' enables the exploration of various tectonic models and the assessment of how their disagreements propagate to paleoecological inference.
How to cite: Kocsis, Á. T., Cannon, J., Qin, X., Müller, D., Raja, N. B., Williams, S., Zahirovic, S., and Dowding, E. M.: ‘rgplates’: R Interface to Plate Tectonic Models in GPlates, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-10843, https://doi.org/10.5194/egusphere-egu25-10843, 2025.