- Research Institute of Geodesy, Topography & Cartography, Department of Geodesy and Geodynamics, Zdiby, Czechia (petr.holota@pecny.cz)
The structure of the Laplace operator is relatively simple when expressed in terms of spherical or ellipsoidal coordinates. The physical surface of the Earth, however, substantially differs from a sphere or an oblate ellipsoid of revolution, even if optimally fitted. The same holds true for the solution domain and the exterior of a sphere or of an oblate ellipsoid of revolution. The situation is more convenient in a system of general curvilinear coordinates such that the physical surface of the Earth (smoothed to a certain degree) is imbedded in the family of coordinate surfaces. Therefore, a transformation of coordinates is applied in treating the geodetic boundary value problem. The transformation contains also an attenuation function. Subsequently, tensor calculus is used and the Laplace operator is expressed in the new coordinates. Its structure becomes more complicated now. Nevertheless, in a sense it represents the topography of the physical surface of the Earth. For this reason the Green’s function method is used together with the method of successive approximations in the solution of the geodetic boundary value problem expressed in terms of the new coordinates. The structure of iteration steps is analyzed and if possible, it is modified by means of integration by parts. The iteration steps and their convergence are discussed and interpreted. The approach is also compared with the method of analytical continuation.
How to cite: Holota, P.: Divergence of the gradient, solution domain geometry and successive approximations in gravity field studies, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-12189, https://doi.org/10.5194/egusphere-egu25-12189, 2025.