EGU25-12464, updated on 15 Mar 2025
https://doi.org/10.5194/egusphere-egu25-12464
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Water table rise forecasting using machine and deep learning models in arid regions, Oman
Hussam Eldin Elzain1, Osman Abdalla2, Ali Al-Maktoumi1,3, Anvar Kacimov3, and Mingjie Chen1
Hussam Eldin Elzain et al.
  • 1Water Research Center, Sultan Qaboos University, Muscat, Oman (halzain944@gmail.com)
  • 2Department of Earth Sciences, College of Science, Sultan Qaboos University, Oman
  • 3Department of Soils, Water and Agricultural Engineering, Sultan Qaboos University, Oman

How to cite: Elzain, H. E., Abdalla, O., Al-Maktoumi, A., Kacimov, A., and Chen, M.: Water table rise forecasting using machine and deep learning models in arid regions, Oman, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-12464, https://doi.org/10.5194/egusphere-egu25-12464, 2025.

This abstract has been withdrawn on 25 Jul 2025.