EGU25-12671, updated on 15 Mar 2025
https://doi.org/10.5194/egusphere-egu25-12671
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Oral | Wednesday, 30 Apr, 16:15–16:25 (CEST)
 
Room 1.34
A physically-based model for texture evolution during dynamic recrystallization: applicationsto ice and prospects for large-scale modeling
Thomas Chauve1, Antonin Hilzheber1, Maurine Montagnat1,4, Véronique Dansereau1,2, Pierre Saramito3, Kévin Fourteau4, and Andréa Tommasi5
Thomas Chauve et al.
  • 1Univ. Grenoble Alpes, CNRS, IRD, G-INP, IGE, Grenoble, France.
  • 2Institut des Sciences de la Terre, Université Grenoble Alpes, CNRS (5275), Grenoble, France.
  • 3Lab. Jean Kuntzmann, CNRS, Université Grenoble-Alpes, F-38041 Grenoble, France.
  • 4Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Études de la Neige, Grenoble, France.
  • 5Géosciences Montpellier - CNRS, Université de Montpellier, France.

Dynamic recrystallization plays a critical role in the texture evolution of polycrystalline materials undergoing high-temperature deformation, particularly in anisotropic materials such as ice. This study presents a novel, physically-based formulation to model texture evolution during dynamic recrystallization, leveraging detailed observations of ice microstructure under dislocation creep and recrystallization [1]. The formulation incorporates an orientation attractor that maximizes resolved shear stress on basal slip systems, coupled with an anisotropic viscoplastic law to capture mechanical responses. Implemented via finite-element methods in the R3iCe model [2], the approach successfully replicates experimental observations across diverse loading conditions, demonstrating its effectiveness in modeling texture-induced mechanical softening. While the model is validated for ice, it shows potential for application to other anisotropic materials such as olivine. Ongoing work is investigating the scalability and applicability of this formulation to large-scale models, such as glacial ice flow simulations, with a focus on addressing challenges related to computational efficiency and parameterization.

 

[1] Chauve, T., Montagnat, M., Dansereau, V., Saramito, P., Fourteau, K., & Tommasi, A. (2024). A physically-based formulation for texture evolution during dynamic recrystallization. A case study of ice. Comptes Rendus. Mécanique, 352(G1), 99-134. https://doi.org/10.5802/crmeca.243

[2] R3iCe repository : https://gricad-gitlab.univ-grenoble-alpes.fr/mecaiceige/tools/ice-polycrystal-models/rheolef_cti

How to cite: Chauve, T., Hilzheber, A., Montagnat, M., Dansereau, V., Saramito, P., Fourteau, K., and Tommasi, A.: A physically-based model for texture evolution during dynamic recrystallization: applicationsto ice and prospects for large-scale modeling, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-12671, https://doi.org/10.5194/egusphere-egu25-12671, 2025.