EGU25-12972, updated on 15 Mar 2025
https://doi.org/10.5194/egusphere-egu25-12972
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Poster | Thursday, 01 May, 14:00–15:45 (CEST), Display time Thursday, 01 May, 08:30–18:00
 
vPoster spot 1, vP1.17
Advancements in Navigation Technology and Robustness Against GNSS Interference: A Comparative Analysis of CRPA 
Furkan Karlitepe1,2, Serhat Sezen2, Bahri Eren Velibasa2, and Abdurrahman Kabalci3
Furkan Karlitepe et al.
  • 1Tokat Gaziosmanpasa University, Engineering and Architecture Faculty, Geomatic Engineering, Türkiye (furkan.karlitepe@gop.edu.tr)
  • 2Middle East Technical University, Teknokent ICT Innovation Center, Ordulu Technology, Ankara, Türkiye (info@ordulu.com)
  • 3Middle East Technical University, Teknokent ICT Innovation Center, Enetki Defence Inc., Ankara, Türkiye (info@enetki.com)

The progressive development of navigation technology has significantly improved real-time positioning accuracy, addressing the needs of modern applications. GNSS (Global Navigation Satellite System) is the primary system used for precise positioning across various platforms. However, GNSS is susceptible to errors, particularly interference, which degrades signal quality and compromises accuracy. Auxiliary systems such as INS, gyroscopes, and map-matching algorithms enhance reliability during interference but depend on GNSS for initialization. Signal detection algorithms, often employing CRPA (Controlled Reception Pattern Antennas) and advanced computational techniques, are essential for mitigating the impact of interferences and ensuring reliable navigation. This study compares the performance of two CRPA systems with different GNSS modules and algorithms, subjected to spoofing-jamming interference during experiments. The first CRPA, integrated with the u-blox ZED-F9P module, supports GPS, BeiDou, and Galileo satellites, employing an adaptive notch filter and pulse blanking. The second CRPA, featuring the Unicore UM980 module, supports GPS, BeiDou, and GLONASS satellites, utilizing a space-time algorithm alongside the JamShield adaptive mechanism for interference mitigation. In this study, real-time measurements were conducted on a car-mounted device platform under normal operating conditions. The platform was tested stationary for 5 minutes, followed by 15-minute intervals at speeds of 60 km/h. During each interval, 5 minutes of jamming and 5 minutes of spoofing were applied, with independent spoofing signals introduced. Jamming signals reached up to 50 dB-Hz, and spoofing signals were applied at levels up to 32 dB-Hz using a specialized interference device. During constant-speed travel, the second CRPA tracked 28 satellites with an HDOP of 0.5, while the first CRPA tracked 23 satellites with an HDOP of 0.75. Under jamming conditions, The second antenna maintained consistent satellite visibility, whereas the first experienced a pronounced decline in the number of observable satellites. Similarly, spoofing had no adverse effect on the second antenna, but the first suffered reduced satellite counts and positional accuracy. Additionally, the first antenna consistently underestimated the vehicle’s speed by approximately 5 km/h and exhibited a speed fluctuation of 0.5 m/s under interference conditions. 

How to cite: Karlitepe, F., Sezen, S., Velibasa, B. E., and Kabalci, A.: Advancements in Navigation Technology and Robustness Against GNSS Interference: A Comparative Analysis of CRPA , EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-12972, https://doi.org/10.5194/egusphere-egu25-12972, 2025.