EGU25-13313, updated on 15 Mar 2025
https://doi.org/10.5194/egusphere-egu25-13313
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Poster | Thursday, 01 May, 10:45–12:30 (CEST), Display time Thursday, 01 May, 08:30–12:30
 
Hall X1, X1.48
Reducing uncertainties in the Vegetation Photosynthesis and Respiration Model (VPRM)
Marcia Joana Kroker1, Theo Glauch1,2, Sanam N. Vardag1,3, Julia Marshall2, and André Butz1,3,4
Marcia Joana Kroker et al.
  • 1Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
  • 2Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
  • 3Heidelberg Center for the Environment, Heidelberg University, Heidelberg, Germany
  • 4Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany

The Vegetation Photosynthesis and Respiration Model (VPRM) is a light-use efficiency model used to estimate biogenic CO2 fluxes based on satellite indices, land cover maps, and meteorological data. It models net ecosystem exchange (NEE) with a simple function that uses four adjustable parameters for each vegetation type, fitted using eddy covariance measurements. VPRM is both accurate and computationally efficient, making it a popular choice for calculating CO2 fluxes at high spatial and temporal resolutions, such as in regional inversion studies.

Initially designed for use with MODIS satellite data at a 500-meter resolution, our updated implementation now supports Sentinel-2 data with a much finer 20-meter resolution. This higher resolution improves the accuracy of biospheric flux estimates by (1) better resolving heterogeneous landscapes, such as croplands, and (2) enabling the incorporation of time-dependent flux tower footprints into the parameter fitting procedure. We compared the flux footprint approach to the traditional implementation for Sentinel-2 for Europe. To ensure robust comparisons, we used Monte Carlo Markov Chain (MCMC) sampling to estimate the range of parameter values for both model versions.

How to cite: Kroker, M. J., Glauch, T., Vardag, S. N., Marshall, J., and Butz, A.: Reducing uncertainties in the Vegetation Photosynthesis and Respiration Model (VPRM), EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-13313, https://doi.org/10.5194/egusphere-egu25-13313, 2025.