- 1Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, USA
- 2Southwest Research Institute, San Antonio, TX, USA
After its arrival at Jupiter in July 2016, Juno conducted a global survey of Jupiter's magnetosphere with its highly eccentric polar orbit. Since then, the JADE instrument has accumulated a large amount of plasma measurements. Using a developed forward modeling method and a supercomputer cluster, we fit all ion measurements between 10 and 50 RJ from PJ5 to PJ56, obtaining a dataset with 70,487 good fits that consists of the following set of plasma parameters: abundances of different heavy ions, density, temperature, and 3‐D bulk flow velocity of heavy ions. This dataset has applications in the research on large-scale structures and small-scale dynamics in Jupiter’s magnetosphere, particularly the equatorial plasma disk region. Potential applications of this dataset include, but are not limited to, the following topics: 1) How is plasma distributed radially and vertically within the plasma disk? 2) What drives the local time asymmetry of plasma flow? 3) What are the consequences of centrifugal instabilities? 4) How is mass and energy transported in the magnetosphere? 4) How is force balance achieved and maintained? An overview of the dataset and some example applications will be presented in this talk.
How to cite: Wang, J., Bagenal, F., Wilson, R., Valek, P., Ebert, R., and Allegrini, F.: Ion Parameters Dataset from Juno/JADE Observations and Its Applications, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-14033, https://doi.org/10.5194/egusphere-egu25-14033, 2025.