EGU25-14396, updated on 15 Mar 2025
https://doi.org/10.5194/egusphere-egu25-14396
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Supraglacial biological niches as a solution to the Sturtian oxygenation problem
Charlotte Minsky, Robin Wordsworth, and David Johnston
Charlotte Minsky et al.
  • Harvard University, Earth and Planetary Sciences, United States of America (cminsky@g.harvard.edu)

Understanding how climate and biology changed during and after Snowball Earth events - global glaciations which coincided with major shifts in the ocean-atmosphere state - is critical for understanding the evolution of life on Earth. New observations of the Neoproterozoic Sturtian glaciation pose challenges to the Snowball paradigm. Precision geochronology shows that the Sturtian lasted ~56 Myr, and the lack of sulfur-MIF signals observed indicates that the atmosphere remained oxygenated throughout. A source of O2 is required to maintain an oxygenated atmosphere for ~56 Myr, but in the canonical Snowball scenario, primary production shuts down completely. Here, we model the carbon and oxygen cycles during the Snowball to investigate this challenge. We propose that photosynthesis in melt holes on the equatorial glacier surface was sufficiently productive to provide the missing O2 source, and that accumulation of aeolian dust sustained these melt holes and supplied them with nutrients. We argue that primary production was limited by phosphorus availability and photosynthetically active surface area, and show that only a dust-supported supraglacial ecosystem could satisfy both conditions.

How to cite: Minsky, C., Wordsworth, R., and Johnston, D.: Supraglacial biological niches as a solution to the Sturtian oxygenation problem, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-14396, https://doi.org/10.5194/egusphere-egu25-14396, 2025.