- GFZ Helmholtz Centre for Geosciences, Section 4.1 Lithosphere Dynamics, Potsdam, Germany
The western Colombian Andes comprise several intermontane and forearc basins, whose evolution has been closely related to the growth of the Central and Western Cordilleras. Available tectonostratigraphic constraints suggest a highly asymmetrical Neogene basin evolution, characterized by limited connectivity among depocenters and a localized sedimentary provenance. Such a configuration is interpreted as the product of the along-strike tectonic segmentation of the Pacific continental margin, as indicated by the presence of contrasting subduction geometries and the occurrence of spatially variable morpho-structural and magmatic styles along the Colombian Andes. It is still uncertain whether spatiotemporal variations in subduction geometry remain a primary driver of recent landscape evolution, or whether there are other significant controlling factors, such as lithological and structural variations, and climatic or vegetation gradients. Here, we use catchment-averaged denudation rates and morphometric analyses of the Colombian Western Cordillera to evaluate the along- and across-strike symmetry of recent erosion patterns, temporal variations in rock uplift, and their primary controls. We also integrate available geomorphological data and erosion rate estimates for the Central Cordillera to assess the drivers of the asymmetric tectono-structural and topographic configuration of the western Colombian Andes. We intend to highlight the value of combining morphometric, structural, and sedimentological data to identify the impacts of tectonic, magmatic, and surface processes on landscape evolution across multiple temporal scales
How to cite: León, S., Faccenna, C., and Schildgen, T.: Drivers of asymmetric morpho-structural evolution along the western Colombian Andes across multiple temporal scales, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-14415, https://doi.org/10.5194/egusphere-egu25-14415, 2025.