EGU25-1452, updated on 14 Mar 2025
https://doi.org/10.5194/egusphere-egu25-1452
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
A Hybrid CNN-LSTM Approach for Precipitation Forecasting under Climate Change Scenarios
Tiantian Tang and Guan Gui
Tiantian Tang and Guan Gui
  • Nanjing University of Posts and Telecommunications, Nanjing, China (tangtt@njupt.edu.cn)

How to cite: Tang, T. and Gui, G.: A Hybrid CNN-LSTM Approach for Precipitation Forecasting under Climate Change Scenarios, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-1452, https://doi.org/10.5194/egusphere-egu25-1452, 2025.

This abstract has been withdrawn on 25 Jul 2025.