EGU25-14642, updated on 15 Mar 2025
https://doi.org/10.5194/egusphere-egu25-14642
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Using Deep Learning to Identify Initial Error Sensitivity for Interpretable ENSO Forecasts
Kinya Toride1,2, Matthew Newman2, Andrew Hoell2, Antonietta Capotondi1,2, Jakob Schlör3, and Dillon Amaya2
Kinya Toride et al.
  • 1CIRES, University of Colorado Boulder, Boulder, United States of America
  • 2NOAA Physical Sciences Laboratory, Boulder, United States of America
  • 3European Centre for Medium Range Weather Forecasts (ECMWF), Reading, UK

How to cite: Toride, K., Newman, M., Hoell, A., Capotondi, A., Schlör, J., and Amaya, D.: Using Deep Learning to Identify Initial Error Sensitivity for Interpretable ENSO Forecasts, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-14642, https://doi.org/10.5194/egusphere-egu25-14642, 2025.

This abstract has been withdrawn on 02 Apr 2025.