- 1Post Doctoral Researcher, Mechanical and Aerospace Department, École Centrale School of Engineering, Mahindra University, India (syenike2024@iitkalumni.org)
- 2Professor, Mechanical and Aerospace Department, École Centrale School of Engineering, Mahindra University, India (ranjith@post.harvard.edu)
Local heterogeneities on a steadily propagating crack front create persistent disturbance along the crack front. These propagating modes are termed as crack front waves. There have been numerous investigations in the literature of the crack front wave associated with a Mode I crack (for e.g., Ramanathan and Fisher, 1997, Morrissey and Rice, 1998, Norris and Abrahams, 2007, Kolvin and Adda-Bedia, 2024). It has been shown that the Mode I crack front wave travels with a speed slightly less than the Rayleigh wave. However, similar investigation of the Mode II rupture has got minimal attention. Although, Willis (2004) demonstrated that for a Poisson solid, Mode II crack front waves do not exist for crack speeds less than 0.715, explicit results on the speed of the crack front waves, when they exist, have not been reported in the literature. The focus of the present work is on a numerical investigation using a recently developed spectral boundary integral equation method (Gupta and Ranjith, 2024) to obtain the speed of the Mode II crack front waves. Further, the perturbation formulae for Mode II crack, developed by Movchan and Willis (1995) are exploited to validate the numerical results on the crack front wave speeds.
How to cite: Mouli, Y. S. C. and Kunnath, R.: Crack front waves under Mode II rupture dynamics, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-14737, https://doi.org/10.5194/egusphere-egu25-14737, 2025.