EGU25-15216, updated on 15 Mar 2025
https://doi.org/10.5194/egusphere-egu25-15216
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Poster | Tuesday, 29 Apr, 14:00–15:45 (CEST), Display time Tuesday, 29 Apr, 08:30–18:00
 
vPoster spot 4, vP4.18
A relevant accessible and interoperable geotechnical data tool to support the landslide risk management
Graziella Emanuela Scarcella, Luigi Aceto, and Giovanni Gullà
Graziella Emanuela Scarcella et al.
  • CNR-IRPI Research Institute for Geo-Hydrological Protection, Italy (graziellaemanuela.scarcella@cnr.it)

The rising frequency and severity of landslides, exacerbated by the effects of climate change and human development in unstable areas, call for effective risk management strategies. In this context, a systematic collection of all the available data regarding geotechnical aspects, in particular geomaterial parameters, results plays a crucial role, providing a decisive contribution to define strategies for sustainable landslide risk management.

In this work, we present the translation of a geotechnical database to the aims of the project Tech4You Innovation Ecosystem – Goal 1 - Pilot Project 1, useful to identify the typical landslide scenarios, to identify sufficient knowledge for the definition of the geotechnical model and geomaterials typing in similar geo-environmental contexts. The database contains the results of laboratory tests carried out in the past by researchers at CNR IRPI in Rende, relating to 11 sites in Calabria, of which 10 in the Province of Catanzaro and 1 in the Province of Vibo Valentia.  For each site, geotechnical characterisation data of the geomaterials, which represent a key cognitive element, were grouped by type of laboratory test (grain size, indices, Atterberg limits, oedometric, direct shear and triaxial tests). We uploaded these data to validate a tool, named GeoDataTech vers. 2.0, which is an update of a previous version. In particular, we have tested the correct functioning (display, query, extraction data) with a significant sample of data. GeoDataTech vers. 2.0 can manage 2399 laboratory tests to date: 61 oedometric tests, 636 grain size, 537 indices, 78 Atterberg limits, 454 specific gravity, 512 direct shear tests and 121 triaxial tests.

This tool will be available to a wide range of stakeholders (researchers, professionals, territorial administrations, public bodies and citizens) allowing us to acquire, interrogate, export data and to upload their own files to integrate them into the database of the tool, performing advanced analyses with reference to the typification of geomaterials. By enabling the sharing of such data between researchers, practitioners and public institutions, the geotechnical tool will contribute significantly to improving disaster prevention strategies, in particular with regard to the reduction of landslide risks, thereby responding to the growing demand for accessible and interoperable data networks that increase synergic interdisciplinary research on topics such as landslide hazard.

This work was funded by the Next Generation EU—Italian NRRP, Mission 4, Component 2, Investment 1.5, call for the creation and strengthening of ‘Innovation Ecosystems’, building ‘Territorial R&D Leaders’ (Directorial Decree n. 2021/3277)—project Tech4You—Technologies for climate change adaptation and quality of life improvement, n. ECS0000009. This work reflects only the authors' views and opinions, neither the Ministry for University and Research nor the European Commission can be considered responsible for them.

How to cite: Scarcella, G. E., Aceto, L., and Gullà, G.: A relevant accessible and interoperable geotechnical data tool to support the landslide risk management, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-15216, https://doi.org/10.5194/egusphere-egu25-15216, 2025.