- 1Departamento de Geodinámica, Universidad de Granada, Granada, Spain (jpgalve@ugr.es)
- 2Departamento Ingeniería Cartográfica, Geodésica y Fotogrametría, Universidad de Jaén, Jaén, Spain (jlperez@ujaen.es)
- 3Dept. de Riesgos Geológicos y Cambio Climático, CN Instituto Geológico y Minero de España-CSIC, Madrid, Spain (r.sarro@igme.es)
- 4Sistema de Gestión Integral de Seguridad y Salud, Diputación de Málaga – UTE Sando Salzillo Mundo, Málaga, Spain (carmelofv@caminitodelrey.info)
- 5Departamento de Ingeniería Civil, Universidad de Alicante, Alicante, Spain (ariquelme@ua.es)
Kinematic analyses are essential for identifying potential detachment mechanisms in rock masses, influenced by fracturing, direction, and slope. Traditionally, these analyses utilize digital stereographic templates to assess whether fracture orientations and dips predispose the mass to planar sliding, wedge failure, or toppling. However, natural rock formations often exhibit complex geometries with varying orientations and overhangs, complicating standard assumptions of directional uniformity. This study addresses such complexities by integrating a Digital Elevation Model (DEM) with Geographic Information Systems (GIS) to calculate the orientation and slope of rock walls and perform geometric calculations. We employ the SAGA GIS tool WEDGEFAIL, which automates these calculations. Enhancements to this tool facilitate semi-automatic assessments of failure mechanisms using topographical and structural data in both 2D and 3D formats. A custom Python script is also developing on high-resolution topographic data from a rock wall at Caminito del Rey (Málaga), represented as a raster (2.5D) and point cloud (3D). This data was augmented by structural evaluations from in-situ geomechanical stations and virtual measurements on the point cloud, employing automatic discontinuity recognition techniques. The results led to a susceptibility map for detachment in plan and elevation views of the analyzed wall. In-situ visual inspections, drone videos, and photorealistic 3D models in virtual environments confirmed a significant spatial correlation between identified susceptible areas and zones prone to detachment, as indicated by the semi-automatic method. This approach in development will enhance the precision of kinematic analyses in complex rock formations and provides a robust framework for assessing rock stability hazards.
How to cite: Galve, J. P., Jerez-Longres, P. S., Ruiz-Fuentes, A., Pérez-García, J. L., Sarro, R., Gómez-López, J. M., Martínez-Corbella, M., Fernández-Naranjo, F. J., Fernández-Vicente, C., Eras-Galarza, M. L., Riquelme, A. J., Alfonso-Jorde, D., Mateos, R. M., and Azañón, J. M.: Multiple kinematic analysis of rock walls using 2D and 3D data: Application at Caminito del Rey (Málaga), EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-15235, https://doi.org/10.5194/egusphere-egu25-15235, 2025.