- 1Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland (sonja.granqvist@helsinki.fi)
- 2Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- 3School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
- 4Finnish Meteorological Institute, Helsinki, Finland
In recent years, large wildfires have spread in Arctic regions as a consequence of ongoing climate change. Arctic organic soils are comparatively shallow but may be ancient, thus thousands of years old carbon may be released in smoldering and deeply burning fires. In Greenland, a land known for its icy expanse, fires are extremely rare. However, in summer 2019, the second-largest wildfire ever recorded on the island occurred at the Kangerluarsuk Tulleq fjord in southwestern Greenland. This study aims to produce pioneering in-field data on this tundra fire, focusing on three key aspects: 1) combustion, 2) burn depth, and 3) the age of the carbon released. Understanding whether the released carbon is modern or old is crucial due to different implications for the global carbon cycle and climate. To estimate carbon losses from the Kangerluarsuk Tulleq tundra fire, we established 14 sampling plots in burned areas and at unburned control sites. The selection of sampling plots was guided by a differenced Normalized Burn Ratio (dNBR) map generated using Sentinel-2 data and field reconnaissance. Within each plot, we assessed fire severity to estimate the above-ground carbon loss. For below-ground carbon loss estimation and burn depth analysis, organic soil samples were collected at burned plots and compared with unburned ones. To explore the vegetation succession and burned vegetation type, organic soil profiles (n=10) were extracted down to the mineral ground using a soil box corer and were studied by light-microscopy. Subsamples (n=20) from burned soil horizons were selected for radiocarbon dating to determine the age of carbon released in the fire. Our preliminary results suggest that soil carbon loss was higher than previously reported at an Alaskan tundra fire site with a mean value of 6.718 ± 0.9 kg of C m-2. The mean burn depth was 9.0 ± 1.8 cm, and soil thaw depths during the 2024 summer were approximately 24 cm deeper in the 2019 burned area compared to unburned tundra. Expected radiocarbon results will indicate the maximum age of the carbon released by the fire. Vegetation succession measurements show that post-fire surfaces were predominantly colonized by pioneering non-Sphagnum bryophytes, Cyperaceae, and Ericaceae. The acquired results are first of a kind from a Greenland tundra fire and produce essential data for global climate modeling to assess the climate impacts of increasing Arctic wildfires.
How to cite: Granqvist, S., Diaz, L., Veraverbeke, S., Pilkama, E., Väliranta, M., and Ruppel, M.: Carbon emissions of an unprecedented Greenland wildfire, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-15318, https://doi.org/10.5194/egusphere-egu25-15318, 2025.