EGU25-15990, updated on 15 Mar 2025
https://doi.org/10.5194/egusphere-egu25-15990
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Poster | Wednesday, 30 Apr, 14:00–15:45 (CEST), Display time Wednesday, 30 Apr, 08:30–18:00
 
vPoster spot A, vPA.36
Expanded aerobic iron biogeochemical cycle in the Paleoproterozoic oceans during the ca. 2.22-2.06 Ga Lomagundi Event
Abdulwaris Ajagunjeun1, Frantz Ossa Ossa1,2, Ilka C. Kleinhanns3, Johanna Marin-Carbonne4, Axel Hofmann2, Aisha Al Suwaidi1, and Ronny Schoenberg2,3
Abdulwaris Ajagunjeun et al.
  • 1Khalifa University, Earth Sciences, Abu Dhabi, United Arab Emirates
  • 2Department of Geology, University of Johannesburg, 2092 Johannesburg, South Africa
  • 3Department of Geosciences, University of Tuebingen, Schnarrenbergstrasse 94-96, 72076 Tuebingen, Germany
  • 4Institute of Earth Sciences (ISTE), University of Lausanne, 1015 Lausanne, Switzerland

The variability of iron (Fe) isotopes during the Paleoproterozoic is a topic of debate due to the complex pathways involved in isotopic fractionation. Similarly, the expansion of ocean oxygenation during the late part of the Great Oxygenation Event (GOE)―the ∼2.22–2.06 Ga Lomagundi Event (LE) that represents Earth’s most pronounced and longest-lived carbon isotope excursion―remains controversial. Here, we present new Fe isotope data on bulk samples from a range of lithologies of the Francevillian Group, Gabon, including marine carbonates, black shales, thin sedimentary pyrite beds, early diagenetic pyrite and carbonate nodules. We also analyse pyritized Francevillian biota that were further combined with data obtained from in situ Fe isotope analyses on early diagenetic pyrite nodules (pyritized Francevillian biota and non-fossil pyrite). The δ56Fe values from this study vary from highly positive values, up to +1.71‰, in non-fossil pyrite nodules, to highly negative values, down to –3.14‰, in pyritized Francevillian biota. The near-to-zero δ56Fe values notably characterize primary carbonates, black shale, thin pyrite beds and carbonate concretions. The near-to-zero δ56Fe values are interpreted to reflect complete oxidation and quantitative removal of dissolved Fe2+ from seawater, in the Paleoproterozoic oceans, followed by complete reduction of Fe3+ in the sediments akin to previously described modern-like Fe biogeochemical cycle which is proposed to have kicked off only from ca. 1.7 Ga. In contrast, positive δ56Fe values are linked to equilibrium isotope fractionation, favoured by the high S/C ratios during early diagenesis, while the negative values reflect the kinetic isotope effect driven by a high organic carbon content of the Francevillian biota. The Francevillian Group massive manganese deposition is devoid of concomitant and significant Fe precipitation in the Francevillian shelf environments which is in stark contrast to early GOE Mn-ore deposits in southern Africa. The data thus suggests that the marine Fe2+ reservoir was already exhausted in the Paleoproterozoic oceans during the late part of the GOE. In this scenario, and considering the observation of Fe-lean Mn deposits, the Paleoproterozoic oceans were likely oxygenated enough to quantitatively oxidize and remove Fe2+ from seawater during the LE. However, extensive oxidation of Fe2+ may have been an important O2 buffer that contributed to maintaining low redox thresholds (e.g., low Eh) in the deep Paleoproterozoic oceans, which ultimately prevented it from reaching oxidizing conditions that require the stability of Mn (oxyhydr)oxides and other elements of similar redox thresholds, i.e., nitrate and selenate. Oxidizing conditions to quantitatively oxidize Mn2+ or to significantly build up a pool of oxyanions stable at much higher redox thresholds (e.g., nitrate and selenate) were only reached in the photic zone where the rate of oxygenic photosynthesis was significantly enhanced as a consequence of intense oxidative weathering during the LE. The findings highlight moderately oxygenated Paleoproterozoic oceans with habitats capable of sustaining complex aerobic ecosystems only restricted in shelf environments during the immediate aftermaths of the GOE.

How to cite: Ajagunjeun, A., Ossa Ossa, F., Kleinhanns, I. C., Marin-Carbonne, J., Hofmann, A., Al Suwaidi, A., and Schoenberg, R.: Expanded aerobic iron biogeochemical cycle in the Paleoproterozoic oceans during the ca. 2.22-2.06 Ga Lomagundi Event, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-15990, https://doi.org/10.5194/egusphere-egu25-15990, 2025.