EGU25-17683, updated on 15 Mar 2025
https://doi.org/10.5194/egusphere-egu25-17683
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Poster | Tuesday, 29 Apr, 14:00–15:45 (CEST), Display time Tuesday, 29 Apr, 08:30–18:00
 
vPoster spot 1, vP1.9
Impact of Cooling Rate on Rheology and Emplacement Dynamics of Basaltic Lava Flows: Insights from the 2023-2024 Sundhnúksgígar Eruption (Iceland)
Fabrizio Di Fiore1, Alessandro Vona2, Danilo Di Genova3, Alberto Caracciolo4, Alessio Pontesilli1, Laura Calabro'3, Gabriele Giuliani2, Silvio Mollo1,5, Dmitry Bondar3,6, Manuela Nazzari1, Claudia Romano2, and Piergiorgio Scarlato1
Fabrizio Di Fiore et al.
  • 1Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy (fabrizio.difiore@ingv.it)
  • 2Dipartimento di Scienze, Università degli Studi Roma Tre, Roma, Italy
  • 3Institute of Science, Technology and Sustainability for Ceramics (ISSMC) of the National Research Council (CNR), Faenza, Italy
  • 4Nordic Volcanological Centre, Institute of Earth Sciences, University of Iceland, Reykjavík, Iceland
  • 5Dipartimento di Scienze della Terra, Sapienza-Università di Roma, Roma, Italy
  • 6Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany

The 2023-2024 eruptions at Sundhnúksgígar in Iceland produced tholeiitic basaltic lavas that traveled at high velocities, affecting vast areas. In this context, disequilibrium crystallization can play a fundamental role in modulating the lava flow dynamic and inundation capacity. To investigate this phenomenon, we performed a comprehensive rheological characterization of the Sundhnúksgígar basaltic liquid and crystal-bearing suspension under both disequilibrium and near-equilibrium conditions. Compared to other basalts erupted worldwide, our results reveal unique features of the Sundhnúksgígar melt: i) exceptionally low solidification rates and ii) the ability to crystallize even at the highest cooling rates applied during the experiments. These characteristics enhance the efficiency of external crust formation, minimizing heat loss from the inner portion of the lava flow, which consequently experiences slower cooling rates. As a result, the lava is able to flow for longer times and travel greater distances than other basaltic flows. Our findings underscore the critical influence of disequilibrium crystallization on the rheological evolution and emplacement behavior of basaltic lavas, with implications for hazard assessment and risk mitigation during effusive eruptions.

How to cite: Di Fiore, F., Vona, A., Di Genova, D., Caracciolo, A., Pontesilli, A., Calabro', L., Giuliani, G., Mollo, S., Bondar, D., Nazzari, M., Romano, C., and Scarlato, P.: Impact of Cooling Rate on Rheology and Emplacement Dynamics of Basaltic Lava Flows: Insights from the 2023-2024 Sundhnúksgígar Eruption (Iceland), EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-17683, https://doi.org/10.5194/egusphere-egu25-17683, 2025.