EGU25-17921, updated on 15 Mar 2025
https://doi.org/10.5194/egusphere-egu25-17921
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Poster | Tuesday, 29 Apr, 14:00–15:45 (CEST), Display time Tuesday, 29 Apr, 08:30–18:00
 
vPoster spot 1, vP1.14
Interrelationship between the electrical and elastic properties using effective medium theories
Khasi Raju and Agata Siniscalchi
Khasi Raju and Agata Siniscalchi
  • University of Bari Aldo Moro, Earth and Environmental sciences , Italy (raju.khasi@uniba.it)

This study focuses on characterizing seismogenic zones by establishing a interrelationship between electrical and elastic properties using Effective Medium Theories (EMTs). The seismogenic zones exhibit complex geological and geophysical signatures that can be explored through joint analysis of electrical resistivity and elastic moduli. The research applies EMTs such as Self-Consistent Approximation (SCA), Generalized Effective Medium (GEM), and Differential Effective Medium (DEM) to model the physical properties of rocks under varying conditions of pressure, porosity, and fluid saturation.

The study compares theoretical predictions with observed data to understand how resistivity, influenced by fluid connectivity and composition, correlates with elastic properties, which are sensitive to stress and fracture networks. The study can reveal critical insights into the mechanical and fluid characteristics of seismogenic zones. By integrating theoretical models with available geophysical data, this work provides a framework for analyzing the interdependence of electrical and elastic properties in seismogenic regions. The findings contribute to advancing the understanding of fluid dynamics, and rock deformation in seismogenic zones, offering a valuable tool for seismic hazard assessment and monitoring.

How to cite: Raju, K. and Siniscalchi, A.: Interrelationship between the electrical and elastic properties using effective medium theories, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-17921, https://doi.org/10.5194/egusphere-egu25-17921, 2025.