EGU25-18812, updated on 15 Mar 2025
https://doi.org/10.5194/egusphere-egu25-18812
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Automated Landslide Inventory Mapping Using SAMLoRA and Hillshade Datasets: A Deep Learning Approach
Ionut Sandric1, Viorel Ilinca2, Ales Letal3, Sansar Raj Meena4, Radu Irimia1, Anamaria Botea1, Filippo Catani4, Zenaida Chitu5, and Jan Klimes6
Ionut Sandric et al.
  • 1University of Bucharest, Faculty of Geography, Environment, Bucharest, Romania (ionut.sandric@geo.unibuc.ro)
  • 2Geological Institute of Romania, Bucharest, Romania
  • 3Department of Geography, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
  • 4Department of Geosciences, Machine Intelligence and Slope Stability Laboratory, University of Padova, Padova, Italy
  • 5National Meteorological Administration, Bucharest, Romania
  • 6The Institute of Rock Structure and Mechanics of the Czech Academy of Sciences, Praque, Czech Republic

How to cite: Sandric, I., Ilinca, V., Letal, A., Raj Meena, S., Irimia, R., Botea, A., Catani, F., Chitu, Z., and Klimes, J.: Automated Landslide Inventory Mapping Using SAMLoRA and Hillshade Datasets: A Deep Learning Approach, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-18812, https://doi.org/10.5194/egusphere-egu25-18812, 2025.

This abstract has been withdrawn on 25 Jul 2025.