EGU25-20022, updated on 15 Mar 2025
https://doi.org/10.5194/egusphere-egu25-20022
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Poster | Tuesday, 29 Apr, 14:00–15:45 (CEST), Display time Tuesday, 29 Apr, 08:30–18:00
 
vPoster spot 1, vP1.11
Etna volcano monitoring by remote sensing systems
Francesco Romeo1,2,4, Luigi Mereu3,4, Michele Prestifilippo2, and Simona Scollo2
Francesco Romeo et al.
  • 1Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy (romeo.1618216@studenti.uniroma1.it)
  • 2Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy
  • 3Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna,Bologna, Italy
  • 4Centre of Excellence CETEMPS, University of L'Aquila, L'Aquila, Italy

The Istituto Nazionale di Geofisica e Vulcanologia - Osservatorio Etneo (INGV-OE) is in charge to monitor Mt. Etna (Catania, Italy), one of the most active volcanoes in Europe. Its activity is characterised by mild strombolian to powerful lava fountains. Monitoring active volcanoes is fundamental to reduce the volcanic hazard, in particular in dense populated areas as it is the case for the Mt. Etna [1]. The combination of different remote sensing systems can improve the analysis of Etna volcanic activity and give a more reliable quantification of volcanic source parameters as the Cloud Height, Mass Eruption Rate, Fine ash Mass and Particle Size. Volcanic source parameters are used as input parameters by volcanic ash transport and dispersal model. A more accurate estimate of these parameters reduces the uncertainty of numerical dispersal model simulations. The data used for this study come from different sources: The VIVOTEK IP8172P is a visible camera located in Catania. The second is a Thermal-Infrared camera located in Nicolosi that collects images (320 x 240 pixels) at few meters resolution [2] [3]. The third instrument is a X-band (9.6 GHz) polarimetric weather radar located nearby the International Airport Vincenzo Bellini (Catania). The fourth is the Spinning Enhanced Visible and Infrared Imager onboard the Meteosat Second Generation Geostationary Satellite [4]. Through the use of complementary remote sensing systems, we aim at improving our understating of explosive phenomena at Etna volcano.

[1] Bonadonna, C., Folch, A., Loughlin, S., & Puempel, H. (2012). Future developments in modelling and monitoring of volcanic ash clouds: outcomes from the first iavcei-wmo workshop on ash dispersal forecast and civil aviation. Bulletin of volcanology, 74 , 1–10.

[2] S. Scollo, M. Prestifilippo, E. Pecora, S. Corradini, L. Merucci, G. Spata, et al., "Eruption column height estimation of the 2011–2013 Etna lava fountains", Ann. Geophys., pp. 57, 2014.

 [3] S. Calvari, G.G. Salerno, L. Spampinato, M. Gouhier, A. La Spina, E. Pecora, et al., "An unloading foam model to constrain Etna’s 11–13 January 2011 lava fountaining episode", J. Geophys. Res. Solid Earth, vol. 116, pp. B11207, 2011.

[4] S. Scollo, M. Prestifilippo, C. Bonadonna, R. Cioni, S. Corradini, W. Degruyter, et al., "Near-Real-Time Tephra Fallout Assessment at Mt. Etna Italy", Remote Sens., vol. 11, pp. 2987, 2019.

How to cite: Romeo, F., Mereu, L., Prestifilippo, M., and Scollo, S.: Etna volcano monitoring by remote sensing systems, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-20022, https://doi.org/10.5194/egusphere-egu25-20022, 2025.