EGU25-20387, updated on 15 Mar 2025
https://doi.org/10.5194/egusphere-egu25-20387
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Poster | Tuesday, 29 Apr, 14:00–15:45 (CEST), Display time Tuesday, 29 Apr, 08:30–18:00
 
vPoster spot 1, vP1.6
Gas hazard assessment at the hydrothermal system of Baia di Levante at Vulcano Island during the 2021-23 unrest of La Fossa crater (Aeolian Islands, Italy)
Massimo Ranaldi1, Maria Luisa Carapezza1, Luca Tarchini1, Nicola Mauro Pagliuca1, Lucia Pruiti2, and Francesco Sortino3
Massimo Ranaldi et al.
  • 1Istituto Nazionale di Geofisica e Vulcanologia, Roma1, Italy (massimo.ranaldi@ingv.it)
  • 2Istituto Nazionale di Geofisica e Vulcanologia, Catania, Italy
  • 3Istituto Nazionale di Geofisica e Vulcanologia, Palermo, Italy

Vulcano Island in Aeolian Archipelago last erupted in 1888-1890 and since then it is affected by an intense fumarolic activity from both the summit crater area of La Fossa volcano and by the hydrothermal system of Baia di Levante located very near to the main settlement of Vulcano Porto.  Ordinary solfataric activity is periodically interrupted by unrest crisis at La Fossa crater associated with increase in fumarole temperature and output, anomalous seismicity, ground deformation and accompanied by an increase in diffuse soil CO2 degassing at Vulcano Porto. In Autumn 2021 a new major unrest crisis began exposing to a high gas hazard Vulcano Porto settlement due to contemporary dispersion of crater fumarolic plume and diffuse soil CO2 degassing; Starting from February 2022, with apex in May, a huge increase in gas output of the geothermal system of Levante Bay was observed. The Baia di Levante area is characterized by the presence of a low-temperature fumarolic field (<100°C) either onshore and offshore and fed by a shallow hydrothermal aquifer heated by magmatic gases. A wide diffuse soil CO2 degassing area extends all over the main beach. The chemical composition of bubbling gases is CO2-dominant, associated with a 1-3 vol.% of H2S and minor CH4 and H2. The Bay is one of the main sites of attraction for the thousands of tourists who visit the island and given the increased risk for gas emissions and possible phreatic eruptions (due to overpressuration of the geothermal aquifer) we carried out some extraordinary geochemical surveys. These consisted of (i) estimation of diffuse soil CO2 flux over a target area (154 points over 16,750 m2) established since 2004; (ii) estimation of the convective CO2 and H2S flux (the main hazardous gases) from the onshore (50 points in the Mud Pool and surrounding areas) and offshore gas vents (2 main large vents and 60 small vents); (iii) Repeated measurements of the chemico-physical parameters (temperature, pH, Eh, conductivity and dissolved O2) in the Baia di Levante sea water (107 profiles; water depth from 50cm to 12m). In particular we investigated the areas characterized by the presence of whitish waters, trains of gas bubbles, emissive vents. Results shown significantly increased values ​​compared to the past of the total CO2 and H2S output (diffuse and convective) measured on land and at sea surface. The sea water shows the presence of a wide anomalous pH in the near-shore sector between Faraglione and Vent 1 and to a lesser extent to the N of the bay. A wide anomaly of negative Eh values ​​persist at all depths in almost all of the bay. A huge emissions of acid gases from the increased submarine fumaroles alter the chemical-physical parameters of the sea water along the bay. Considering the increased gas hazard the adoption of risk prevention measures was suggested to authorities.

How to cite: Ranaldi, M., Carapezza, M. L., Tarchini, L., Pagliuca, N. M., Pruiti, L., and Sortino, F.: Gas hazard assessment at the hydrothermal system of Baia di Levante at Vulcano Island during the 2021-23 unrest of La Fossa crater (Aeolian Islands, Italy), EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-20387, https://doi.org/10.5194/egusphere-egu25-20387, 2025.