- 1Northumbria University, Newcastle, UK (vivek.agarwal@northumbria.ac.uk)
- 2Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
- 3UPES, Dehradun, India
Contaminant co-occurrence in water resources poses significant threats to public health and ecosystem stability, necessitating comprehensive monitoring and analysis. This study investigates the spatiotemporal distribution of arsenic, fluoride, and perfluorooctane sulfonate (PFOS) contamination in groundwater and surface water across Yorkshire from 2000 to 2023. Data for this assessment were obtained from the Environment Agency, ensuring reliable and standardised measurements across the study period. The results reveal a concerning trend of increasing arsenic and fluoride concentrations, particularly in the eastern and southern regions, with arsenic levels exceeding 10 µg/L and fluoride concentrations surpassing 1.5 mg/L in several areas by 2023. The PFOS contamination, assessed in both groundwater and surface water for 2023, highlights significant contamination in the southern regions, with concentrations exceeding 0.001 µg/L in some hotspots. The co-contamination maps indicate overlapping regions of high contaminant concentrations, suggesting potential sources of industrial pollution and agricultural runoff. This study emphasises the need for targeted mitigation strategies and continuous monitoring to protect public health and ensure water quality standards across the region.
How to cite: Agarwal, V., Kumar, M., and Saxena, A.: Spatiotemporal Assessment of Arsenic, Fluoride, and PFOS Co-Contamination in Yorkshire's Water Resources, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-20494, https://doi.org/10.5194/egusphere-egu25-20494, 2025.