EGU25-2237, updated on 14 Mar 2025
https://doi.org/10.5194/egusphere-egu25-2237
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
Poster | Friday, 02 May, 14:00–15:45 (CEST), Display time Friday, 02 May, 08:30–18:00
 
vPoster spot 4, vP4.10
Assessment of GOCI-II satellite remote sensing products in Lake Taihu
Min Zhao, Huaming Li, Hao Li, Xuan Zhang, Xiaosong Ding, and Fang Gong
Min Zhao et al.
  • Donghai Laboratory, China (zhaominjtdx@163.com)

The Geostationary Ocean Color Imager-II (GOCI-II), which was launched on February 19, 2020, offers an increased observation times within a day and finer spatial resolution than those of its predecessor, the Geostationary Ocean Color Imager (GOCI), which was launched in 2010. To ensure the reliability of GOCI-II data for practical applications, the accuracy of remote sensing products must be validated. In this study, we employed in situ data from Lake Taihu for validation. We assessed the accuracy of GOCI-II products, including the remote sensing reflectance inverted via two atmospheric correction algorithms (ultraviolet (UV) and near-infrared (NIR) atmospheric correction algorithms), as well as the chlorophyll a (Chl-a) concentration, total suspended matter (TSM) concentration, and phytoplankton absorption coefficient (aph). Our results revealed that the UV atmospheric correction algorithm provided a relatively higher accuracy in Lake Taihu, with average absolute percentage deviations (APDs) of the remote sensing reflectance across different bands of 25.17% (412 nm), 29.69% (443 nm), 22.27% (490 nm), 19.38% (555 nm), 36.83% (660 nm), and 33.0% (680 nm). Compared to the products generated using the NIR atmospheric correction algorithm, the derived Chl-a concentration, TSM concentration, and aph products from the UV algorithm showed improved accuracy, with APD values reduced by 16.92%, 3.32%, and 10.91%, respectively. When using UV correction, the 412 nm band performed better than the 380 nm band, likely due to the lower signal-to-noise ratio of the 380 nm band and smaller extrapolation errors when assuming a zero signal for the 412 nm band. Considering that the NIR algorithm is suitable for open ocean waters while the UV algorithm demonstrates higher accuracy in highly turbid environments, a combined UV-NIR atmospheric correction algorithm may be more suitable for addressing different types of water environments. Additionally, more suitable retrieval algorithms are needed to improve the accuracy of Chl-a concentration and aph in eutrophic waters.

How to cite: Zhao, M., Li, H., Li, H., Zhang, X., Ding, X., and Gong, F.: Assessment of GOCI-II satellite remote sensing products in Lake Taihu, EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-2237, https://doi.org/10.5194/egusphere-egu25-2237, 2025.