EGU25-2602, updated on 14 Mar 2025
https://doi.org/10.5194/egusphere-egu25-2602
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
LiDAR-based indices and machine learning efforts to model biophysical estimations of corn (Zea mays L.)
K. Colton Flynn1, Gurjinder Baath2, Bala Ram Sapkota2, and Douglas R. Smith1
K. Colton Flynn et al.
  • 1United States Department of Agriculture, Agricultural Research Service, United States of America (colton.flynn@usda.gov)
  • 2AgriLife, Texas A&M University, Temple, United States of America (gurjinder.baath@ag.tamu.edu)

How to cite: Flynn, K. C., Baath, G., Sapkota, B. R., and Smith, D. R.: LiDAR-based indices and machine learning efforts to model biophysical estimations of corn (Zea mays L.), EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-2602, https://doi.org/10.5194/egusphere-egu25-2602, 2025.

This abstract has been withdrawn on 25 Jul 2025.